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Abstract

This humble project aims to study cyclic codes over different Rings. We
started our thesis work by providing some basics of coding theory. Afterwards,
we Studied codes over the commutative rings Zy, Z,», and finite chain rings.
Lastly, we moved towards codes over noncommutative rings.
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0.1 Introduction

Codes over rings has experienced tremendous growth since its inception.
Progress has been attended in the direction of determining the structural
properties of codes over large families of rings.

The study of linear codes over rings was started in 1970 with the in-
vestigation of analogs of cyclic codes over integer residue rings in [4], [5], and
later on codes over Z, was studied in [6], [30], and [34]. The results over Z,
generalised to Z,m by Pleas, Qian, Sole and Pramod, and Lopez.

Norton and Salagean extended the structure theorem given in [8], and
23], to cyclic codes over finite chain rings. That paper provided approach
which did not require commutative algebra.

In the past few years linear codes over noncommutative rings have
received much attention in [24], [10], and [1].

Only to be clear, most of this thesis work is not new. All what we are
trying to do is to study what has been done so far and review it in our new
way. Hopefully, we could add something with this promising future.

In the first chapter we illustrated introductory material, including basic
definitions, facts and theorems in Abstract Algebra and coding Theory that
form the building blocks of thesis.

In the second chapter we studied the structure of the cyclic codes. In
the third (fourth) chapters we studied the generator matrices for a cyclic
code C' over the ring Z; (Z,n), the ideals of Zy(x)/(f(z)) (Zyn(x)/(f(x))),
where f(x) is an irreducible factor of 2™ — 1 and then use these ideals to
know the ideals of Z,(z)/(z™ — 1) (Zyn(z)/(2™ —1)) . Finally, we studed the
dual code for the code C.



In the fifth chapter the generalization of the method of chapters [3]
and [4] has been studied to obtain cyclic and self dual cyclic codes over finite
chain rings with the condition that the length of the code is not divisible by
the characteristic of the residue field .

Finally, in the last chapter Cyclic linear codes over arbitrary ( not
necessarily commutative finite rings ) has been investigated and prove that
the characterizations in previous chapters to be true for a large class of such
codes over these rings.
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Rad(R)

Notations

definition

The ring of integers modulo n

Finite field with p™ elements.

A linear code C over Fjm with length n and dimension &.

The destance of the code.

linear code C over Fjm with length n dimension k and distance d(C) = d
The reciprocal polynomial of f(x).

Generator matrix for the code C.

Parity check matrix for the code C.

Dual code, the code generated by the parity check matrix.

The radical of the ring R.

The permutation w — 2w (mod n).

Matrix ring, the set of all n by n matrix with element from the ring R.

A group ring where C,, is cyclic group generated by g.



Chapter 1

Basics and Preliminaries

This chapter covers the main basic concepts, definitions and theorems from
abstract algebra, and coding theory that are used in the following chapters .
The proofs of theorems, lemmas and corollaries in this chapter can be found
in the references as specified.

1.1 Background of Algebra

Definition 1. [18] Let R be a ring. A (left) R module is an additive abelian
group M together with a function 6 : R x M —s M such that 6(r,m) = rm
for allr,s € R and m,my,my € M:

1. r(my +mgy) = rmy + rms.
2. (r+s)m=rm+ sm.

3. r(sm) = (rs)m.



If in addition 1m = m for all m € M (1 is the identity element of
R), then M is said to be a unitary R module. A right R module is defined
similarly via a function 0 : M x R — M such that 0(m,r) = mr and
satisfying the obvious analogues of 1,2, 3.

Definition 2. [}/ The group ring RG of a ring R and finite group G is the
set of formal sums
>

i

ri € R, g" € G with addition, scalar multiplication and ordinary multiplica-
tion defined by
D_rig + ) rig =) (ri+ri)g

7”,’,7”/1' GR,gi S G

r Z rig' = Z(m)g’}
(Zrzg Zr]g erlrﬂg

Definition 3. [35] Let R be a commutative ring. A nonempty subset I of R
1s called an ideal if

e a+b belong to I, for all a,b € I.
eracl, forallr € R anda € I.

Definition 4. [14] Let I be an ideal. We say that I is mazximal if for every
tdeal J ,such that I C J, either J =1 or J = R.

Definition 5. [14] Let R be a ring with 1. An element u of R is a unit if
there is an element b € R such that u.b = b.u = 1.
The elemant b is called multiplicative inverse.
An element a of R is a zero divisor if a # 0 and there is an element b € R,

b # 0 such that a.b =0 or b.a = 0.

Theorem 1.1.1. [13] Let R be a ring with 1. An element of R cannot be
both a unit and zero divisor.



Theorem 1.1.2. [13] Let U(R) denotes the units of R, for any m > 2,
UZy,)=U(m):={aec{l,2,--- ,m—1}: ged(a,m) =1}

Definition 6. [7] The intersection of all mazimal ideals of a commutative
ring R is called the radical of R, the intersection of all prime ideals of a
ring R is called the prime radical of R.

Definition 7. [2/ A local ring is a ring R that contains a single maximal
ideal.

One property of a local ring R is that the subset R —m is precisely the
set of ring units, where m is the maximal ideal. This follows because, in a
ring, any nonunit belongs to at least one maximal ideal.

Theorem 1.1.3. [29] For every finite field F' There exists a prime p and
positive integer m, such that F' has p™ element.

Definition 8. [38] The order of a field is the number of elements in the
field. If the order is infinite, we call the field an infinite field.
And if the order is finite, we call the field a finite field or a Galois field.

Definition 9. [38] A finite field with p™ elements is called a Galois field of
order p™ and is denoted by Fpm .

Theorem 1.1.4. [38] For any prime p and any positive integer m, there
exists a finite field, unique up to isomorphism, with p™ elements.

Lemma 1. [31] For every element « of a finite field F' with p™ elements, we
have o®" = a.

Definition 10. /38] The order of a nonzero element o € Fym, denoted by
ord(a) or |a| is the smallest positive integer k such that of = 1.

Definition 11. [38] (Primitive Root of Unity) An element o of a field is an
n' root of unity if a" =1, n = p™ — 1. It is a primitive n'* root of unity if
a”=1and a™ #1 for0 <m < n.

An element « in a finite field Fym is called a primitive element (or a
generator) of Fym if Fym = {0,a,02, -+ ,aP" 71}



Theorem 1.1.5. [31] The elements of Fym are precisely the roots of the
polynomial zP" — x.

Definition 12. [38] Let F be a field and let K C F be a subring. Then
we say K is a subfield of F if K s a field. In this case we also call F' an
extension field of K and abbreviate this by saying F/K is a field extension.

Example 1. The compler numbers is an extension field of both () and R
which is an extension field for Q) also.

Theorem 1.1.6. [38] Let K be a field and let f(x) € K|x] be a nonconstant
polynomial. Then there exist an extension F of K and o € F such that

fla) =0.

Theorem 1.1.7. [20] For every finite field Fym the multiplicative group Fym™
of nonzero elements of Fm s cyclic.

Theorem 1.1.8. [30/(The fundamental theorem of finite abelian groups)
Every finite abelian group G can be expressed as the direct sum of cyclic
subgroups of prime power order.

Definition 13. [30/Let F be a field. A polynomial f(z) € F|x] is said to an
associate of another polynomial g(x) € Flz] if

f(z) = cg(x).
for some nonzero c € F.

Definition 14. [3] The ring Ry = Fym +uFpm +u?Fym + ...+ u* 1 Fym, where
uF =0 is a commutative chain ring of p™* elements with mazimal ideal uRy,
Since u is nilpotent with nilpotent index k we have

0= ukRk C ...C U2Rk CuR, C Ry,
Moreover Ry /uRy = Fym is the residue field and
W' Ry| = p™u Ry = p™ T 0<i<k-—1.

Denote Ry = Fym, Ry = Fym + uFym , Ry = Fym + uFym + v*Fym ...,
Ry, = Fym + uFym + u*Fym + ... + uF 1 .



1.2 Background of Coding Theory

Let F,m be the finite field with p™ elements and (F,m)™ be the linear space
of all n tuples over F,m, i.e.,its elements are row vectors.

Definition 15. [11] Let k,n € N such that 1 < k < n. A linear code C
is a k dimensional vector subspace of (F,m)"™. We say that C is a linear code
over Fym with length n and dimension k. An element of C' is called a word

of C

We denote the linear code C over F,» with length n and dimension k
dy C [n, k] code.

Definition 16. [11] The Hamming distance d(u,v) between two vectors
u,v € (Fym)™ is the number of coordinates in which w and v differ.

Example 2. let u=(110111), v=(101011) be 2 vectors over F3 then, d(u,v) =
3

Definition 17. [11] The Hamming weight of a vector u € (F,m)™ w(u), is
the number of its nonzero coordinates, i.e. w(u) = d(u,0).

Definition 18. [11] The distance of a code C is the smallest distance
between distinct words:

d(C) = min{d(c;, ¢j)|ci,c; € C,e; # ¢}

Theorem 1.2.1. [11] If C is a linear code, the distance d(C) is the same as
the minimum weight of nonzero words: d(C) = min{w(c)|c € C,c # 0}.

Proof. d(u,v) = d(0,u —v) = w(u —v), where u —v € C
d(C) = min{d(u,v),u # v,u,v € C} = min{w(u —v),u # v,u,v € C}

d(C) = min{w(z) : z € C}



If we know the distance d(C') of an [n, k] code, then we can refer to the
code as an [n, k, d| code.

Definition 19. [11] An [n, k,d] linear code C'is cyclic if the cyclic shift of
a word is also a word, i.e. If (co,...,cn_1) € C, then (¢c,_1,co, ..., Cn2) € C.

Definition 20. [6/ A linear code of length n over a commutative ring R
is constacyclic if for some unit a € R, the code is invariant under the
automorphism

(CO7 Ci,y 7cn71) — (acnfla Co, * 7Cn72>-

In the case a = 1, the code is cyclic.

To describe algebraic properties of cyclic codes, we need to intro-
duce the following structure.We construct a bijective correspondence be-
tween the vectors of (F,=)™ and the residue classes of polynomials in the
ring Fym[z]/(x™ — 1): v = (vo, ..., Un—1) > Vo + V17 + + Vp_12,—1. We can
view linear codes as subsets of the ring Fym[z]/(2z™ — 1).

The following theorem points out the algebraic structure of cyclic codes.

Theorem 1.2.2. [11] Let C be an [n, k,d] code, then C is cyclic if and only
if C is an ideal of Fym[z]/(z" — 1).

Proof. Multiplying by = modulo ™ — 1 corresponds to a cyclic shift:
(€, C1y ey 1) then (c,_1,co, ...y Cr2)
z(co + 1T + + Cro1Tp—1) = Cpo1 + CoT + + Ch_2Tp_o. O

Definition 21. [31] A generator matrix for an [n, k] code C is any k xn
matrix G whose rows form a basis for C.

Example 3. Consider the linear code C' over Zy, with the generating matriz

100 21 2
G=|(0120 0
001 2

SN

1
0
Since G has 3 rows then the dimension of C' is three, and C[6,3] has 4°
codewords.



In general there are many generator matrices for a code. For any set
of k independent columns of a generator matrix G, the corresponding set
of coordinates forms an information set for C. The remaining r = n — k
coordinates are termed a redundancy set and r is called the redundancy of

C.

Definition 22. [31] The parity check matriz for the [n, k| code C, defined
by

C={zeF: Hi" =0}
The code C is the kernel of the linear transformation L : x — Haz', the
matriz H is (n — k) X n matriz .

Note that the rows of H will also be independent. In general, there are
also several possible parity check matrices for C. The next theorem gives one
of them when C' has a generator matrix in standard form.

Theorem 1.2.3. [31] If G = [I}|4] is a generator matriz for the [n, k] code
C in standard form, then H = [—AT|I,,_4] is a parity check matriz for C.

Proof. We clearly have
HG" = -A"+ A" = 0.

Thus C is contained in the kernel of the linear transformation z — HaxT.
As H has rank n — k, this linear transformation has kernel of dimension k,
which is also the dimension of C. The result follows. O]

The generator matrix G of an [n, k] code C' is simply a matrix whose
rows are independent and span the code.

Definition 23. [31] The rows of the parity check matrix H are independent,
hence H is the generator matrix of some code, called the dual or orthogonal
of C and denoted C*. Notice that C* is an [n,n—k] code. An alternate way
to define the dual code is by using inner products.



Since the ordinary inner product of vectors x = xy -+ Tp, Yy = Y1 -+ - Ynin
Eris xy = Y1 w3y
Therefore, we see that C* can also be defined by

Ct={z€F}:2c=0 for all ceC}

The generator polynomial for C* can be obtained from the generator
polynomial C. To find these, we introduce the concept of the reciprocal
polynomial . Let f(z) = fo + fix + ... + fox® be a polynomial of degree
a in Fylz]. The reciprocal polynomial of f(x) is the polynomial f*(x) =
22f(x') = fo+ farx+ ...+ for®. So f*(x) has coefficients the reverse of those
of f(z).

Example 4. Consider the code C[6,3] over Z3 generated by

1 00 21 2

G=10101 2

| 0 1 2 0|

Then _ -
1 21100

H=[102 0010

|11 100 1]

Definition 24. [23] A code is self orthogonal if C C C*+. A code is self
dual if C = C*.

Theorem 1.2.4. [31] Let a = (ag, ay, ..., an1) and b = (bg, by, ..., by1) be vec-
tors in F. with associated polynomials a(x) and b(x). Then a is orthogonal

to b and all its shifts if and only if a(x)b*(x) =0 in R,.

Definition 25. [29] The characteristic of the ring is the smallest positive
integer n such that
1+...+1=0
—
n  times

if n exist , and Zero otherwise.

Definition 26. [13] a matriz ring is any collection of matrices over some
ring R that form a ring under matrix addition and matriz multiplication.



Definition 27. [13] The set of all n x n matrices over an arbitrary ring R,
denoted M,,(R) usually referred to as the ”full ring of n-by-n matrices”.

Definition 28. [22] division ring, is a ring in which division is possible.
Specifically, it is a nonzero ring in which every nonzero element a has a
multiplicative inverse.

Division rings differ from fields only in that their multiplication is not
required to be commutative.

Lemma 2. [9] If R is a principal ideal domain, then every right ideal of the
full matriz ring M,,(R) is principal.

Definition 29. [38] A module is called Artinian (Noetherian) if every
nonempty set of submodules has a minimal (maximal) element. This is the
same as saying that every descending (ascending) sequence of submodules
becomes ultimately stationary.

Theorem 1.2.5. [38] A module is called Artinian (Noetherian) if and only
if every descending (ascending) sequence of submodules becomes ultimately
stationary.

Proof. suppose A is Noetherian, and let A; C Ay C ... be an ascending
sequence of submodules of A. This sequence must have a maximal element
A, hence

An - An+1 = ...

Conversely, assume every ascending sequence of submodules of A becomes
ultimately stationary. Consider any nonempty set of submodules of A and
suppose this set has no maximal element. Take any element A; in the set,
since A; is not maximal, A; is properly contained in an element A, of the set,
etc. Thus we get an infinite ascending sequence A; C Ay C .... contrary to
assumption. ]

Lemma 3. [21] Let A be a semisimple ring.
(i) A is a direct sum of finitely many simple submodules.
(ii) A is artinian and noetherian.



Lemma 4. [1}] Let F be a field. Then F|x] is a principal ideal domain.

Lemma 5. [[33],23.7] If R is a finite ring, then for any module pM , Radr(M) =
Rad(R)M

Theorem 1.2.6. [19](ArtinWedderburns theorem) Any simple left or right
Artintan ring is isomorphic to an n; X n; matriz ring over a division ring D,
where both n and D are uniquely determined.

Corollary 1. [19] every simple ring that is finite dimensional over a division
ring 1s a matrixz ring. This is Joseph Wedderburn’s original result.

Theorem 1.2.7. [17] The group ring RG is semisimple if and only if

o R is semisimple group
o (G is finite
e the order of G is a unit in R

Lemma 6 ([7],Theorem 4.2.3). Let R be a right Noetherian (Artinian) ring.
Then any finitely generated right R module is again Noetherian (Artinian).

Example 5. Fvery finite ring is left and right Artinian.

Lemma 7 ([7],Theorem 5.3.5). In any left (or right) Artinian ring R, R is
semisimple if and only if it has no nilpotent ideals other than zero.

Definition 30. [30] Two codes Cy and Cy both of length n are said to be
equivalent, if one can be obtained from the other by permuting the coordi-
nates and (if necessary) changing the signs of certain coordinates.

Example 6. The quaternary linear codes generated by ( 11 ) ,cmd( 1 3 )
are equivalent.

Definition 31. [30] Codes differ only by a permutation of coordinates are
said to be permutation equivalent.

Example 7. The quaternary linear codes generated by

11 d 11
02 )%\ 20
are permutation equivalent.

10



Definition 32. [39] The automorphism group Aut(C) of a code C is the
group generated by all permutations and sign changes of the coordinates that
preserve the set of codewords of C'.

1.3 Galois Ring

Galois rings are finite rings isomorphic to quotient rings Z,«[x]/(f) where p
is a prime and f is a monic polynomial such that f(modp) is an irreducible
polynomial with coefficients in GF(p).

Let GR(p*,m) denote the Galois ring Z,[z]/f(z) where f is monic
basic irreducible polynomial over Z,» of degree m
The elements of Z,:[z]/f(x) are residue classes of the form
ap+ a1 + . + a2+ (f(2), @i € Zp.

If we write ¢ = x + f(z), then f(¢) = 0 and every element in GR(p*, m) can
be expressed uniquely in the form

ao+a1C+...+am_1<m_1, a; € Zpk.

The set T = {0,¢,...,(p™ '} is Teichmuller set. Every element in
GR(p*,m) can be expressed uniquely in the form

ag + pz1 + ... +pk’12k,1, zeT.

Let F(z) = f(x)(modp). Thus, the polynomial f(z) is linked to F(z)
by the homomorphism
p: Zyelx] = Zy|x).

11



If F(x) € Z,[z] is monic, irreducible of the form
F(z)=a2" + a2 + - + ay.
Indeed, in such a case, we have

fl@)y=a"+ " —p+a_1)a" "+ + (p" —p+ag) € Zylzl.

r—1
GR<pk7T) = {Z bjGj 1 bj € Zr,0< j < 1},
7=0

with GR(p,r)(¢) = 0.

Theorem 1.3.1. Galois rings are local rings with mazimal ideal (p) and
residue field GF(p™)

Proof. In a finite ring any nonzero element which is not a zero divisor is
invertible (theorem1.1.1). Therefore (p) consists of all the zero divisors of R
together with the zero element 0 is the only maximal ideal of R and R/(p)
is a finite field . Let u: R — R/(p) be a homomorphism , a € R or R/(p),
and na denote na the sum of a n times.

Then pu(1) = p(pl) = 0. Therefore R/(p) is of characteristic p and R/(p) ~
GF(p™) for some positive integer m.

Let k be the characteristic of R. From k1 = 0 we deduce ku(l) =
(k1) = 0. Therefore p|k.
Now we use contradiction to prove that & = p", let k = p™l where n,l > 0
and (p,l) = 1 and assume that [ > 1, then a = p"1 and b = [1 are nonzero
elements of R and ab = 0. It follows that {1 € (p) and lu(1) = u(ll) =
0inR/(p). But R/(p) is of characteristic p, so p|l, which contradicts (p, ) = 1.
Therefore [ =1 and k = p™ . O

Example 8. Consider the ring Zg = Zsz2

Fo= Z3/(a* +1)={a+ b :a,b€ F3}, where(*> =1

12



F9:{Oa1727C71+Cv2+ga2C>1+2€a2+2<}

the polynomial x* + 1 is the primitive polynomial used for the field extension
F3 C Fy.
By Hensels lemma

f(l’):x2+(9—3+0)$—|—(9_3+1):I2+6x+7

1s a monic basic irreducible over Zg.
Now we can describe

GR(32, 2) = {ao + CL1C . ao,CLlC c Zg}
|f(z)| = 82, the maximal ideal is
3GR(3%,2) = 3(ap + ai() : ag,a1{ € Zy.

IGR(32,2)| =32 =9

13



Chapter 2

Cyclic codes

In this chapter the structure of cyclic codes has been studied. Cyclic codes
has gained its popularity in controlling errors for several good reasons. Firstly,
encoding cyclic code is easy and relatively inexpensive than others. Secondly,
cyclic code is considered as the best known codes. Thirdly, cyclic property
represents a great deal of algebraic structure, which can be used to predict
the error detecting properties of the code and further it discovers codes with
appropriate properties.

The main intent of this chapter is to examine carefully the consequences
of working over a ring, rather than a finite field.

2.1 The structure of binary cyclic code

Let n be an odd number throw this chapter, let w € {0,1,...n — 1}, and the
map y ,(n):w — 2w(modn), > ,(n) divides the integers 0, 1,--- ,n —1 into
disjoint cycles.

14



Example 9. 5,(63) =(0)(1 2 4 8 16 32)(3 6 12 24 48 33)

(510 20 40 17 34)(7 14 28 56 49 35)(9 18 36)
(11 22 44 25 50 37)(13 26 52 35 41 19 38) (15 30 60 57 51 39)
(21 42) (23 46 29 58 53 43) (27 45 54) (31 62 61 59 55 47 ).

The relation between " — 1 factors and the cycles of n
Let 2™ — 1 = fifs....fi_1 be the factorization of 2™ — 1 into irreducible poly-
nomial over Z,, let ¢ be a primitive n'* root of unity. The zeros of fi(x)
in a suitable extension field are (", (", ..., (" where (11,79, ,7%) IS a cy-
cle of Y",(n), and each cycle represents in this way the zeros of one of the
fi(x). Hence each f;(x) with zeros (™, ("™ --- (", is associated with the cycle
(r1,r9,+ , Tk

Definition 33. Let (ay,az,...,a5) be a cycle of > ,(n), the exponent of this
cycle is e; == n/r; where r; is the largest factor of n for which a;|r;, for each
j=1,2,...;s

Example 10.

Cycles Ezxponent
1 2 4 8 16 32 63
3 6 12 24 33 48 21
5 10 17 20 34 40 63
7 14 28 35 49 56 9
9 18 36 7
11 22 25 37 44 50 63
13 19 26 38 41 25 63
15 30 39 51 57 60 21

21 42 3
23 29 43 46 53 58 63
27 45 ¥4 7
31 47 55 59 61 62 63
0 1

Theorem 2.1.1. [27] Let wy, ws, ..., w; be the cycles of Y ,n , then the num-
ber of cyclic codes of length n is 2¢.
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Example 11. In Y, 63 the number of cyclic codes of length 63 is 2.

Theorem 2.1.2. [27] Let e be the lest common multiple of the exponent of
the cycles contained in the set S of cycles. If e < n the code associate with

S has minimum distance 2. If e = n the minimum distance of the code is at
least 3.

Example 12. in the previous example the code C associated with the set
{3 6 12 24 33 48),(15 30 39 51 57 60)} has d(C)=2

Theorem 2.1.3. [27] Let S contains the numbers 1,2,...d-1,d among its cy-
cles, the minimum distance of the code associated with S is > d + 1.

Example 13. For the code C' associated with the set
{(1 2 4 8 16 32)(3 6 12 24 33 48)},
d(C) > 5.

Definition 34. The exponent of a polynomial f(z) is the least value of e for
which f(x) divides z¢ — 1.

Theorem 2.1.4. [27] g;(z") is exactly divisible by fi(x) if and only if it
corresponds to the cycle containing r.

We can now assign to each factor r; of n an irreducible factor f; of
2™ — 1, which will have exponent e; = n/r;.

Example 14. The relation between x5 — 1 factors and the cycles of 63
8 —1=0+z+22+25+ 20 +2°+ 21 +z+2) 1+ 22 + 23 +2° +
)1+ 22+ 2t + 2+ 21+ + 2t + 25 + 281+ 2% + 2% (1 + 2 + 23 +
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P+ 21+ +22+ 25+ 21+ 2+ 290 +2) 1+ 22+ 23)(1 + 2 + 23)

Factors Exponents | Associated Cycles
fi=l+a+a?+2°+2° 63 1,2,4,8,16,32
fo=1+a%+af 63 11,22, 25,37, 44, 50.
fa=1+z+2? 3 21,42
fi=1+2*+ 23+ 2° 4 2f 63 5,20, 17,20, 34, 40.
fo=1+2%+a2* +2°+af 21 3,6,12,24,33,48
fo=1+X+a*+2°+af 63 31,47,55,56,61, 62.
fr=1+a%+2a" 9 7,14,28,35,49, 56
fe=1+z+a3+z*+ 2 63 22,29, 43,46, 53, 58.
fo=1+x+2%>+2°+ 2" 21 15, 30, 39, 51, 57, 60.
fio=1+2z+ 25 36 13,19, 26, 38, 41, 52.
fu=1+ux 1 0
o=14+2>+23 7 27,45, 54.
fis=14xz+2° 7 9,18,36

2.2 Structure of codes over Z,, where m is a
product of distinct primes

Theorem 2.2.1. (Maschkes theorem)
Let R be a field G a finite group and suppose the characteristic of R dose
not divide the order of G then RG is semisimple

Theorem 2.2.2. [}] The ring Z,, is semisimple if and only if m is a product
of distinct primes

Proof. Given an integer m which is a direct product of distinct primes p;, a
method is given for constructing codes over the ring of integers modulo m
from cyclic codes over Z,,. Specifically, if we are given a cyclic (n, k;) code
over Zp,.
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Our interest will be with group ring Z,,C,,, where C,, = (g).
From theorem 1.2.7 Z,,C,, is semisimple if and only if Z,, is semisimple, C),
is finite, and n is a unit in Z,,.

From theorem 2.2.2 Z,,C), is semisimple if and only if m is a product
of distinct primes, C), is finite, and n is a unit in Z,,.
But the units in Z,, is any integer relatively prime to m, if not there exist p
s.t. p?|m m = p?k, m is not a product of distinct primes,a contradiction. [J

Corollary 2. [4] Z,,C,, is semisimple if and only if

e m is a product of distinct primes
e (), is finite

e ged(n,m) =1

Let Z,,C,, be a group ring where C), is acyclic group generated by g, to
each element a = Z?:_()l rig* in Z,,C,,, where r; € R, we associate the n tuple
(ro,71,...Tn_1). Hence, (r,_1,70,71, ..., "h_2)associated with ga € Z,,C,,.

If N is a submodule of Z,,C,, with the property that any cyclic shift of
any element in Z,,C), is also in N, then N is an ideal of Z,,C,.

The key point in the investigation is the following isomorphism which
is an elementary theorem of number theory.

Theorem 2.2.3. [21] if m =[] p}’", e; > 1, p; distinct primes then

I J—
Zm = Zplel X szeQ Ko X dper = Hsz‘ei

with the isomorphism is exhibited explicitly by
Ui (a',a?, - a),

where 1 € Z,, and 1 = aj(modpjj),z' =1,-- s

18



the inverse map,¥ !, is just the Chinese remainder theorem for inte-
gers.

If
Ui=jr— (0,07, b°)
then
Vg4 g (a' + b a® + b2 - af +b).
Returning to the case where m is a product of distinct primes, we see that
Zy, is isomorphic to a direct product of the finite fields Z,,, i =1, - ,s.

The above isomorphism may be used to establish the following isomor-
phism between the group rings

T ZnCr — Zp, Co X ZpyCry X -+ X Z,Cy = [ [ Z3.Cn,

n—1 n—1 n—1

. . 1 9 .
Zrigz Z\Ij(rl>gz = (ai7ai7"' ’af)gz
1=0 =0 =0

n—1 n—1 n—1
_ ( al 7 2 4 . s z)
= i9 a; g, ) a; g
=0 =0 i=0

where the two representation of elements in II{_, Z,, are equivalent and used
used where convenient. The multiplication and addition in II}_,Z,, are in-
herited from Z,,C,, under V i.e. if

a = Z(az‘l7a?v"' 7af)gi
0

and

n—1

b= (0L )y
0

is i
=
are two arbitrary elements in [[] then
n—1
at+b=> (a +b,a;+b,-- a +b)g'
i=0
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and

ab = ( :b%, ?b37"' ) fbf)
Now let A be an ideal in Z,,C, consists of elements {(327—) r;g")?)} where
j € k for some index set k to give successively each elements of A. Let the
image of these elements under ¥ be the set

n—1 n—1
(St St St -
1=0 =0
n—1 n—1 n—1
(O algy. O aigy, -, aig')}
1=0 1=0 =0

again where j € k .

Theorem 2.2.4. [4] Denote by A; the set of distinct elements {(Z;1 01 aﬁgz) }
as j €k, forl =1,2,...,s, then A; is an ideal of Zyp, Cy forl =

Proof. Since A is an ideal in Z,,C,,, it is closed under subtraction and mul-
tiplication by elements of Z,,C),,. it follows that since it also contains the
zero element, is closed under subtraction and multiplication by elements of

N O

Definition 35. /4] If B; is an ideal in Zp Cp o L =1,...;s then the direct
product of ideals By x By X ... x Bs in [[;_, Zp, Cy 15 defined as the set
of elements {(b*,b?,...,b°),b" € B'} , where all possible combinations of ele-
ments are considered and, as before, addition and multiplication are defined
component wise. The direct product [[_, B; is an ideal of Zp. Cy,

Theorem 2.2. 5 [4] The image of an ideal A in Z,,C,,, which we denote by
T(A), in [[]_, Z,,, is a direct product of the ideals A, , 1 =1,2,--- s

Proof. Let a = Y1) rig’ € A w7 Z?fol(ai ai, -, a7)g' € I[;_, Z,,Chn
then the element 7~ 1(327-1(0,0,--- ,dl,---,0)g’ Hz L A;) € A. This fol-
lows since the element r € Z,,, such that ¥(r) = (0,---,0,1,0,---,0), where
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the 1 is in the I** position, is such that

n—1 n—1
ra = r(z rig") —> T’l(Z(O, 0,---,al,---,0)g".
i=0 i=o

Thus every ideal A in Z,,C,, is isomorphic to a direct product of ideals A; of
A; in Zpl C,,l =1....,s. Similarly the direct product of ideals A; in sz C,, is
isomorphic to an ideal of Z,,C,, i.e.,if a € A, then ra € A since A is an ideal,
now 7(ra) = (3.1-1(0,0,--- ,al,--- ,0)g". O

79

Thus there is a one to one correspondence between the ideals of Z,,C),
and the direct product of ideals in [];_, Zp, C, , and once the ideals of Z, C,
are known, every ideal of Z,,C,, may be obtained by taking an appropriate
direct product and applying the inverse map 7 !.

Our reasons for restricting attention to the case where m is a product
of distinct primes and ged(m,n) = 1 is thus twofold. In the first instance,
we can construct any ideal in Z,,C),, from ideals of Zpi C,, and methods for
constructing these ideals are well known. Secondly, in considering ideals of
Zp. Cy it is generally simpler to restrict attention to the case gcd(pi,n) = 1.

Example 15. Consider the group ring Z15Cs which is isomorphic to Z3Cs X
Z5Cs. We take the (8,3) code over Zz with generator

g(z)=1+z+2>+22°+2°
as the ideal Ay of Z3Cs and the (8,2) code over Zs with generator
g2(z) = 2+ 2 4 22% + 2* 4 22° + 2°

as the ideal Ay of Z5Cg. As an example of code vectors of the ideal 77(A)
obtained from (ai,as) corresponding to the respective generator polynomi-
als,i.e.,

ap =(1,1,1,2,0,1,0,0) € A;.

a1 = (2,1,2,0,1,2,1,0) € A,.

21



The first coefficient of the element in Zy5Cg corresponding to the element
(ar,as) in Ay X Ay is given by W71(1,2) = 7 since(using chines remainder
theorem,)

7 = 1(mod3)

7 = 2(mod5),

similarly the second by W~—1(1,2) = 7,the third by $~(1,2) = 7, etc.,to give
the product a1 x ay = (7,1,7,5,6,7,6,0).

2.3 Structure of codes over Z,, where m = IIp;’

In the previous section, we investigated the structure of cyclic codes over the
ring Z,,, the integers modulo m, where m is a product of distinct primes.
This not include Z,-. In this section we will study this case.

If m=T[_, p{" then,
ZnCr = D1 Z,ei O,

And every ideal of Z,,C;, is a direct product of ideals of Z, ei Cn,i=1,.,s5,
where Z,,C),, can be viewed both as a ring and a module over Zy,

It is sufficient to consider the case m = p", since a linear code over Z,, as a
submodule and a cyclic code as an ideal.

Theorem 2.3.1. [36] Z,G can be written as a finite direct product of fields.
ie., Z,G ~T[Y, F.

Proof. Z,G is a commutative semisimple ring by (theorem 2.2.1), and so Z,G
can be written as the direct product of fields since every semisimple ring is
the (finite) product of simple rings.

A commutative simple ring F' must be a field: the zero ring is not simple,
and if @ € F is nonzero, then (a) is a (two-sided) ideal hence (a) = F so
a € F* and F is a field
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Z,G is a finite ring of characteristic p, so the same is true for Fj,
1=1,---,N. Say F; has p™ elements.

Theorem 2.3.2. [36] Z,G has 2V ideals.

Proof. The multiplicative subgroup of F; forms a cyclic group from theorem
1.1.7, so there exists an element (,, € F; such that F; = Z,((y,) and (p, is
a primitive m!* root of unity over Z,, with (m;,p) = 1. So

7

N

i=1

This tells us there are N minimal nonzero ideals of Z,G, namely,

Fi, Fy, - -+, Fy. Any direct product of a subset of these ideals gives rise to an
ideal of Z,G.

To mimic the above procedure for Z,»G, if n > 1, immediately fails.
Indeed, Z,»G is not semisimple, so that Z,»G is not the direct product of
fields. However, we can alter the procedure as follows.

Theorem 2.3.3. [36] The group ring Zy H is the direct product of full matrix
rings over local rings for any (not necessarily commutative) finite group H.

Proof. If H is any finite group of order r with (r,p) = 1, then Z,G =~

[T, Z,(Cm,) is replaced by the more general statement (theorem 1.2.6) on
semisimple rings .
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where [Z,(Ck,)]n, represents the full ring of n; x n; matrices over the
field Z,(Cx, )-
Z,H has exactly k minimal nonzero ideals and a total of 2* ideals.

By the theorem of Spiegel (1976), we can describe Z,» H in an expres-
sion similar to the previous as follow

k
ZP”H = H[ZP" (Ckz)]m?
=1

i.e., Z,»H is the direct product of full matrix rings over local rings. O]

To describe the ideals , we use the following lemma.

Lemma 8. [30] Let R be a commutative ring with 1 and S = M, (R). If I is
a two sided ideal of S, then there exists an ideal J of R such that I = M, (J).

Proof. Let E;; be the n x n such that

B 1, i"row and j"column
! 0, Otherwise.

Let C;; be the matrix obtained from the identity matrix by the inter-
change of the i'* and j** rows.

For i, 5 integerslet

fi,j . I—> R,
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fii(A) = ai
for A € I, where a;; is the entry in the i row and j™ column of A. Then
Thus
Jij ={fi;(A) - Ael}

is an ideal of R.

If A€ I, then CikAle €l and fZ](A> = fkl(CikAle), so that Jij = Ju
and J;; is independent of ¢ and j.

Let J = J; 1. Then I is contained in the full ring of n X n matrices with
coefficients in J.

To prove the required result, it is now sufficient to show that rE;; € I.
Solet I;; ={Ael: fiu(A)=0if (k1) # (i,7)}.
If Jw = {fi;(A) : A € I,;}, then J;; is again an ideal of R and J;; C J;; .
But if A € l, then E”AEJJ c lij and fl](A) = fij (E“AEJJ), so that
Jij — Jij — J
Thus if r € J, rE;j € I;; C I and the result follows. O

Theorem 2.3.4. [36] Z,nG has (n+ 1)V ideals.

Proof. To each full matrix ring [Z,n (Ck;)]n,, there corresponds exactly n + 1
ideals, namely,

[Zp” (Ckz)]n'ﬂ [pr” (Ckz>]nz7 T [anp”(Cki)]m =0.

This says that each minimal ideal of Z,H gives rise to n nonzero ideals of
ZynH, so that there are exactly (n + 1)* ideals of Z,. H.
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If G is a finite abelian group of order r and (r,p) = 1, then we can
explicitly find the codes of Z,»G by the following procedure. We first find
the minimal ideals of Z,G. Say F} is one of them, and F} is a field of order
p™. Find a positive integer ay, such that

p™ =1 (mod ay)
but
p™ # 1(mod aq) for 0 < m < n;.

I contains all the roots of the equation

ny __
Pl

=1, and as a{|(p™ — 1),
ar _ ( al)(pnl—l)/al _ g(p"l—l) -1

al al al

So (., € Fi, and (,, does not belong to any proper subfield of . Then
Fy = Z,((a, ). Similarly, find as, -+ ,ay so that F; = Z,(¢,,) and Fy,--- , Fy
are all the minimal ideals of Z,G. Then ZyuG ~ []r, Zyn(Ca,). Now all the
(n+ 1) ideals of Z,»G can be seen. [

Codes over Z,, where m = Hle Py’

To determine codes over Z,,, we first write m = Hle p;' with e; > 1
and p; distinct primes. Let

Vi Ly — Zpeiyi =1,..,5

be given by ¥;(a) = a®¥) where a' = a(mod Z i ). 1y is a ring homomorphism.
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Define
V1 Ly —> Zprer X Lppea X oo X L es
by
P(a) = (¥1(a), ¥2(a), .., vs(a)).

Then v is a homomorphism. By the Chinese Remainder Theorem 1 is onto,
and since both rings in question are finite, v is in fact an isomorphism.

For G a finite abelian group of order n, with (n,m) = 1, extend 9 to an
isomorphism 1, by

WP ZmG—>Zp§1G>< Zpngx coe X Loes G,

Ps
Zng Z¢1 Tg) gaZd’? Tg)g; " 7Z¢S<Tg)g)
9€G geG geqG geG

Note that ¢ is onto from Chinese Remainder Theorem. to prove that P is
one to one, let > . gg € kery

QZ(Z gg) = (Z 1/11(7“9% Zw2(7ﬁg>? o 7Z¢s(r9)) = <07 07 ey O)
geG geG geG geqG

since (n,m) =1, r, = 0. Hence, kery = 0.

If I is an ideal of Z,,G, then {>_ 11(rg)g] >, 799 € I} is an ideal
of Z G, while if A; is an ideal of Z G for i = 1,2, ..., s, then

v H(ar, - ,a5)|a; € Ai}

is an ideal of Z,,G. Thus knowledge of the ideals, and hence codes of Z,,G
is equivalent to knowledge of the codes of Z G for i = 1,...;s. Using the
results of the previous section, we can determlne the codes Of Z ei G from the

codes of Z,,G.[36]
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Chapter 3

Quaternary codes

In this chapter, the generator matrices has been studied for a code C' over
the ring Zy, the ideals of Zy(x)/(f(x)), where f(x) is an irreducible factor of
™ —1 and then use these ideals to know the ideals of Z,(x)/(z™—1). Finally,
the dual code for the code C' has been studied.

3.1 Generator Matrices

Definition 36. [39] The type of the group : Let G be a group of p™ ele-
ments, and let G be a direct sum of my cyclic subgroups of order p°*, ---,
m, cyclic subgroups of order p . Then we say that the group is of type
(p)my - - (p)m,.. And the group consisting of the identity element alone

s of type po.
Example 16. [39] Let n be the length of the code,

Zy =@ {0, ---,0,2;,0,--- ,0)|x; € Zs}
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where each

{(0,...,0,2,0,...,0)|x € Z,}
is a cyclic subgroup of order 22. Hence, Z} is of type (2°)™,

Theorem 3.1.1. [39] Any Z, linear code C' containing some nonzero code-
words 1s permutation equivalent to a Zy linear code with a generator matrix

of the form
I, A B
< 0 2[4, 20) (3.1)

where I, denote the ki X ki identity matriz, and Iy, also denote the ko X ko
identity matriz, A and C are Zy matrices, and B is a Z, matriz.

Then C'is an abelian group of type 412%2  and C contains 22¥1+*2 code-
words.

Proof. We apply induction on the code length n . We distinguish the follow-
ing two cases:

1. There is a codeword of order 4 in C.

After permuting the coordinates of the codeword and (if necessary)
multiplying the codeword by —1 | we can assume that the codeword of
order 4 is of the form

(Lo, o+ s cp).

Let
C'={(0,z,...,x,) € C}.

(' is also a Z4 linear code and can be regarded as a code of length n— 1
by deleting the first coordinate.

By induction hypothesis, C’ has a generator matrix of the form
0 Iy A B
0 0 2L, 2 )’

where A; and C are Z, matrices and B; is a Z, matrix.
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ulj.“

Then C' has a generator matrix of the form

1 coyovr ,Chy Chot1* Chiytho  Chithot1 " Cn
0 Iy, -1 Ay B,
0 0 21, 2C

After adding a certain linear combination of the last k1 + ko — 1 rows
of the above matrix to the first row, we can assume that it is carried
into a matrix of the form in theorem .

There is no codeword of order 4 in C'. Then all nonzero codewords in
C are of order 2. Since C' # 0", there is a codeword of order 2 in C.

As in (1) we can assume that this codeword is of the form

(2, 262, s ,202)
Define C” as in (1). Then C’ is also a Z, linear code without codewords
of order 4. C" can be regarded as a code of length n — 1.

By induction hypothesis, C’ has a generator matrix of the form
(0 2@ 2C))
where C is a Z5 matrix. Then C' has a generator matrix of the form

2 205---2Ck, 2Ck41---2C,
0 2[k2—1 26'1
After adding a certain linear combination of the last ko — 1 rows of the

above matrix to the first row, we can assume that it is carried into a
matrix of the form

(20, 2C)

which is a matrix of the form in theorem with & = O.

O
Let wy, - ,ug, € Zy and up,41,-* , Uk 4k, € Zo. We may regard
s Uky s Uky+1,5° * * 5 Uk, +k, @S information symbols. Then encoding is car-

ried out by matrix multiplication

(UI, e 7uk17uk1+17 T 7uk1+k2)G'
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Theorem 3.1.2. [39] The dual code C*+ of the Z, linear code C with gener-
ator matriz (3.1) has generator matriz

_BI—CUA O Ly,
( 2A' 2L, 0 ) (3:2)

where n is the code length of C. C* is an abelian group of type 4" Fi1—k29kz
and C+ contains 22"~*1=k2 codewords.

Proof. Denote the Z4 linear code with generator matrix 3.2 by C’ Clearly
¢’ c Cch

Let ¢ = (c1, o, ,¢,) € CL.

After adding a certain linear combination of the first n — k; — ko rows
of 3.2 to ¢, we can obtain a codeword of C*, which is of the form

d = (cla Tty Chyy Chy1s 0 Chy kg 0,00 70)'
Since ¢ is orthogonal to the last ko rows of 3.1, each of cx,, cry 11, , Chytks
is 0 or 2.
After adding a certain linear combination of the last ks rows of (3.2)
to ¢ we can obtain a codeword of C+, which is of the form

d"=(c1, + ,x,0,...,0).

Since ¢” is orthogonal to the first &k rows of 3.1, ¢; = - - - = ¢, = 0. Therefore
ce (. O

Definition 37. The codes over Fy with generator matrix
(I, A B) (3.3)

where B is the reduction modulo 2 of B is the residue code.
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The codes over Fy with generator matrix

(s 4 F) o

1s the torsion code .

Corollary 3. [39] Any self dual Zy code of length n contains 2" codewords.

Proof. Let C be a self dual Z; code of length n with generator matrix (3.1).
|C| — 22k1+k2 and |CJ_| — 22n72k17k2‘
Since C*+ = O, we have 22n—2ki=k2 — 92ki+kz

Therefore n = 2ky + ko and |C| = 2", O

3.2 The ideals of Z,(z)/(f(x))

Definition 38. [6/ A code over Zy or a Zy code is a set C of n tuples over
Zy.
a linear code over Zy or a quaternary code is a Z, module.

Definition 39. [6] A polynomial f(x) € Zy[z] is trreducible in Z, if when-
ever f(x) = g(x)h(x) for two polynomials g(x) and h(x) in Zy[x], one of g(x)
or h(x) is a unit.

Let p : Zy[z] = Zs[z] be the map which sends a to a(mod 2) and x to

X.
And p : Zyn — Z,[x] be the map which sends a to a(mod p) and x to x in
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general.
The ring homomorphism.

p Zylx) — Zs[x]
ap + a1z + - -+ + a2 — pag + parx + -+ paya” (3.5)

Definition 40. [20] A polynomial f(x) € Zym[z] is basic irreducible if its
wu(f(z)) is irreducible in Z,[x].

Definition 41. /8] An ideal I of a ring Z, is called a primary ideal provided
ab € I implies that either a € I or b” € I for some positive integer r.

Definition 42. [30] A polynomial f(x) € Z4|x| is primary if the principal
ideal

(f(x)) = {f(x)g(x) : g(x) € Zu[2]}

15 primary ideal.
Definition 43. [8] Let f(x) and g(x) be polynomials over the ring R: If
ged(f(z), g(x)) = 1,

we say that f(z) and g(x) are relatively prime (over R). In particular, f(z)
and g(x) are relatively prime if and only if there exist polynomials a(x) and

b(z) over R for which

al2) f(z) + b(z)g(z) = 1.

Theorem 3.2.1. [20] If f(x) is a basic irreducible polynomial, then f(x) is
primary

Proof. Suppose g(z)h(z) € (f(x)). Since pf(x) is irreducible,

d = ged(pg(x), pf (x))
is either 1 or puf(x).

If d = 1, then by definition there exist polynomials a(z) and b(x) in
Z,|x] such that

pla())p(g(x)) + p(b(x))u(f () = 1.
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Hence
a(z)g(x) + b(x) f(x) =1+ 2s(x)

for some s(z) € Zy[x]. Therefore
a(z)g(x)h(x)(1+25(x)) +b(x) f (2)h(2)(1+25(z)) = h(x)(1+25(x))* = h(z),
implying that h(x) € (f(z)).

Suppose now that d = u(f(x)). Then there exists a(z) € Zy[z] such
that

implying that

Thus f(x) is a primary polynomial. O

Definition 44. [8] Two polynomials f and g in R[x] are called coprime, or
relatively prime if Rlx] = (f) + (g)

Lemma 9. [30] Let f(x) and g(x) be polynomials in Z[x]. Then f(x) and
g(x) are coprime if and only if u(f(z)) and pu(g(x)) are coprime polynomials

Proof. 1f f(x) and g(x) are coprime, then

alx) f(x) + b(x)g(z) = 1

for some a(z) and b(z) in Z4[z].

Then



implying that p(f(z)) and u(g(x)) are coprime.
Conversely, suppose that p(f(z)) and p(g(x)) are coprime. Then there exist
a(x) and b(x) in Z[z]| such that

pla(x))u(f () + pb())p(g(x)) = 1.

Thus
a(z)f(z) +b(x)g(x) = 1+ 2s(x)
for some s(x) € Z,[z] since 14-2s(x) is invertible, then 1 € Z,[z] by definition
(44) showing that f(z) and g(z) are coprime.
Or
a(z)(1+ 2s(x)) f(x) + b(@)(1 + 25(2))g(z) = (1 + 2s(2))* =1

showing that f(z) and g(x) are coprime. O

Theorem 3.2.2. [39] Let f(x) be a monic polynomial of degree > 1 in Zy[z],
then

o f(z)=gi1(x)...gx(x), where gi(x), ..., gr(x) are pairwise coprime monic
primary polynomials.

o Let
f(z) = g1(x)...qr(x) = hy(x)...hs(T) (3.6)

be two factorization of f(x) into pairwise coprime monic primary poly-
nomials, then k = s and after renumbering, g;(x) = hi(z), i =1,..., k.

Theorem 3.2.3. (Hensel’s lemma)/[26]

Let f(z) € R[x] where R is a chain ring, let p: R — R/(a) where (a) is the
mazimal ideal.

Suppose p(f(x)) = hi(z)ha(x)...hp(x), where hy(x)ha(x) - - he(z) are pair-
wise coprime polynomials in R[z|/(a).

Then there ezist gi1(x), g2(x), -+, gp(x) in R[z] such that:

1- p(gi(x)) = hi(x) forl <i <k,

2- q1(x), g2(2), ..., ge(x) are pairwise coprime, and

8- f(x) = g1(7)g2(2)gr (), deg gi(x) =deg hi(z).
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Theorem 3.2.4. [30] Let n be a positive odd integer. Then the polynomial
x"—1 over Z4 can be factored into a product of finitely many pairwise coprime
basic irreducible polynomaials over Z , say

" = 1= g1(2), 92(2), .., gr () (3.7)

Moreover, g1(x),go(x), ..., gr(x) are uniquely determined up to a rearrange-
ment.

Proof. Over Z, we have the unique factorization
" — 1= hy(x)ha(x) - hg(x),

where hy(x)ho(z) - - (:z:) are irreducible polynomials over Z,. Since n is
odd, hy, (z)ho(z), -+ , hi(x) are pairwise coprime.

By Hensel’s lemma, there are monic polynomials g;(x), g2(), ..., g ()
over Z, such that pg;(X) = hi(X) and deg ¢;(X) = deg hi(X) for i =
2, ..., k, that g1(X), g2(X), -, gx(X) are pairwise coprime, and that

" —1 =g (X)ge(X)...q-(X),
Since pg;(X) = hi(z), i = 1,2, ..., k, are irreducible over Z,,

91(X), 92(X), ..., gu(X)

are basic irreducible. By lemma 9 ¢;(X), i = 1,2, ..., k, are primary.

Then the uniqueness of (3.7) follows from Theorem 3.2.2 O

Theorem 3.2.5. [30] If f(x) is in Z4 and is basic irreducible, then the only
ideals of Z4/(f(x)) are (0), (1) and (2).

Proof. Suppose I is a nonzero ideal of the ring Z,/(f(z)) and g(x)+(f(z)) €
I for some g(x) which is not belong (f(z)). Since
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ged(pg(x), pf(x)) =1 or pf(x).

If ged(pf(x), pg(x)) = 1, then there exist a(z),b(x) € Z,[x] such that
pa(@)pf(z) + pb(z)pg(z) = 1

a(x) f(z) + b(z)g(z) = 14 2s(x),
s(x) € Zy[z], multiply both sides by (1 + 2s(z))

a(x) f(z)(1+2s(x)) + b(x)g(x)(1 + 2s(x)) = 1,

(b
Hence, g(x) +

(1+ 28( ) + (f(l“)))(g(l") +(f(2))) =1+ (f(2)).
(x)) is invertible.

I'= Zy[z]/(f(x)) = (1).

)
(f

If ged(pf(z), ug(x)) = pf(x), then there exists a(x),b(x),s(r) € Zy
such that

pa(@)pf () + pg(x)ub(z) = pf ()
a(x)f(z) + b(z)g(x) = f(z) + 2s(x)
2a(x) f(z) + 2b(z)g(x) = 2f ()
2b(z)g(x) + (f(z)) =2+ (f(2)).
Hence,2 + (f(z)) € I

2+ (f(X) <1
From the ring homomorphism (3.5) because
(Zala] /(F(X)))/ (2 + (F(X)) = Zo[X]/ (1] (X)),

which is a field, (2 + (f(X))) is a maximal ideal of Z4[x]/(f(X)). Hence
=@+ (f(X) . .
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3.3 The ideals of Z4[z]/(z" — 1)

Lemma 10. [39] Let f1(X), fa(X), ..., fe(X) be k pairwise coprime polyno-
mials over Z, and Let f;(X) denote the product of all f;(X) except fi;(X),
Then f;(X) and f;(X) are coprime fori=1,2,.... k.

Proof. By Lemma 9 the coprimeness of f;(X) and f;(X) for i # j implies
the coprimeness of p1f;(X) and pf;(X) . But pfi(X), ufe(X), ..., ufi(X) are

polynomials over Zs. So pufi(X) = f1(X). o fima (X)), pfisn (X)) p fro(X)
and pf;(X) are coprime. Again by Lemma 9, f;(X) and f;(X) are coprime.
O

Lemma 11. [39] Let fi(X), fo(X), ..., fr(X) be k pairwise coprime polyno-
mials in Z4| X, then

(LX) (X)) fe(X)) = (1(X)) N (£2(X)) N0 (fr(X))

Proof. Clearly, (fi1(X), fo(X), ..., fr(X)) € (fi(X)) for every i. Therefore

(F1(X) f2(X).. fu(X)) € (1(X)) N (f2(X)) N0 (f(X)).

It remains to prove that

(F1(X) f2(X).. fe(X)) 2 (1(X)) N (f2(X)) N0 (f(X)).

We apply induction on k& . The case k = 1 is trivial. Let £ > 1 and assume
that it’s holds for k£ — 1. That is, we have

(f1(X) (X)) fieer (X)) = (f1(X)) N (f2(X)) N0 (fraa (X))

Let

g(X) € (fu(X)) N (fo(X)) N0 (fr(X)),
then

9(X) € (f1(X) f2(X)... frm1 (X)) U (fu(X)).
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Thus there are polynomials ¢ (X), ¢2(X) € Z4[X] such that

9(x) = q1(X) f1r(X) f2(X).. fe—1(X) = @2 [ ().

By lemma 10 f1(X) fo(X)...fr—1(X) and fi(z) are coprime. Then there are
polynomials hy(X), he(X) € Z4[X] such that

ha(X) f1(X) f2(X) - o1 (X)) + ho(X) fir(z) = 1.

Multiplying the last equation by ¢g(X), we obtain
9(@) 71 (X) f1(X) fo(X)... fr1(X) + g(@) ha(X) fi(x) = g()
9(z) = (g2h1(X) + @1 (X)ha (X)) [1(X) f2(X).. fr—1(X) fr ().
Thus g(z) € (f1(X)f2(X)... fe—1(X) fe(z)). Which compleat the proof. [

Theorem 3.3.1. [39] (Sun Zi Theorem) Let fi(X), f2(X), ..., fr(x) be k pair-
wise coprime polynomials of degree > 1 over Zy and a1(X), az(X), ..., ax(X)
be any k polynomials over Zy. Then the simultaneous congruences

z = ay(X)(modf,(X))

x = az(X)(modfz (X))

© = ag (X)(modfy(X)).

has a solution in Z4[X].
Moreover, the solution is unique modf(X) fo(X) -+ fr(x), i.e., if g(X) and

h(X) are two solutions , then

9(X) = h(X)(modf1(X) f2(X)... fu()).

Proof. By Lemma 10 f;(X) and f;(X) are coprime, i = 1,2, ..., k. Then there
are polynomials b;(X) and ¢;(X) over Z, such that

A

bi(X) fi(X) + ¢:(X) fi(X) = 1. (3-8)
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It is easy to verify that

arby f1(X) + asba fo(X) + - + agby fe(X) (3.9)

is a solution of the system.

Now let g(X) and h(X) be two solutions of the system.
Then g(X) = h(X)(modf;( X)) ,i=1,2,.... k.
That is, g(X) — h(X) € (f;(X)), 1 =1,2,...,k. By Lemma 11

9(X) — h(X) € fi(X) fo(X)... fu()

That is,
9(X) = (X)) (modf,(X) fo(X)... fi(x)).
]
Theorem 3.3.2. [39] Let f1(X), fo(X), .. ,fk( k pairwise coprime poly-
(

x)
nomials of degree > 1 over Z, and f(z) = fi(X)fo(X)...fe(x). Denote the
residue class ring Z,[X|/(f(X)) by R. Fori=1,2,...,k, let

be
)

ei = bi(X) fi(X) + (f(X)), (3.10)

where b;(X) is the polynomial b;(X) appearing in (3.8). Then

e R; = Re; is an ideal of R, and e; is the identity of R;, i = 1,2, ..., k.
[ ] R:Rl@RQ@@Rk

Corollary 4. [39] Let fi(X), f2(X), ..., fu(x) be k pairwise coprime monic
polynomials of degree> 1 over Zy and f(x) = f1(X)fo( X)...fx(x), Then for
any i =1,2,....k, the map

Zu[ X1/ fi(X) — (Zu[X]/(f(X))ei = Re (3.11)
k(X)) + (fi(X)) — (B(X) + (f(X)))e:

s an isomorphism of rings.
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Corollary 5. [39] Let fi(X), f2(X), ..., fu(x) be k pairwise coprime monic
polynomials of degree> 1 over Zy and f(x) = f1(X)fo( X)...fe(x), Then

Zy(x)/(f(2)) = Zs(2)/(}1(X)) ® Zs(2)/(f2(X)) ® - - - & Za()/(fr(X)).

Lemma 12. [30] Let n be an odd positive integer and 2" —1 = f1(X) fo(X)... fr(2)
be the unique factorization of x™ — 1 into basic irreducible polynomaials over
Zy. Then under the isomorphism (3.11), the ideals (0), (1 + (fi(X))), and

(2 + (fi(X))) of Z4[X]/(fi(X)) are mapped into (0), (fi(X)+ (z" —1)) and
(2fi(X) + (2™ — 1)) of R; = Re;, respectively.

Proof. Under the isomorphism (3.11), we have
L+ (fi(X)) — (L4 (@" — 1))e;.
By (3.10), e; = b;(X) fi(X) + (2" — 1). Therefore
L+ (fi(X)) — bi(X) fi(X) + (2" = 1).
Clearly, R X
bi(X) fi(X) + (2" — 1) € (fi(X) + (2" — 1)).(%)
Multiplying both sides of (3.8) by fZ(X ), we obtain
b:(X) [i(X) [:(X) + Ci(X) (=" = 1) = fi(X),
Then R
bi(X) i(X) [i(X) + (2" = 1) = Ji(X) + (2" = 1),
which implies

FilX) + (2" = 1) € (0s(X) i(X) + (2" = 1)) ().

Therefore

(Bi(X)Fi(X) + (@™ = 1)) = (Ji(X) + (2" = 1)), (by * and * %)

and the image of (1 + (f;(X))) under (3.11) is (fz( )+ (2" —1)) .
Similarly, we can prove that the image of (2 + (f,(X))) under (3.11) is

(2fi(z) + (z™ —1)). O
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Theorem 3.3.3. [30] Let x"—1 = fifs... fx, be a product of basic irreducible
and pairwise coprime polynomials for odd n. Then any ideal in the ring R,
is a sum of ideal (f;) and (2f;)

Proof. By theorem (3.2.4) the factorization of 2" — 1 exists and is unique.
By corollary 5

Ry = Zu[x]/(f1) ® Za[2]/(f2) @ Zal]/(f3) ® - - ® Za[2]/(fr).
if I is an ideal of R,,, then

I~HLSlLd DI

[[15]p135], where [; is an ideal of the ring Zy[z]|/(fi), for i = 1,2,--- k. By
theorem (3.2.5),

I; =0, Zu[z]/(fi) or (2+(fi)):
By theorem (12) I; = Zy[x]/(f;), then it corresponds to the ideal (f;) in the
ring R, if I; = (24 (f;)), then it corresponds to the ideal (2f;). In any case,
the ideal I is a sum of (f;) and (2f,). O

Theorem 3.3.4. [30] Suppose C' is a Zy cyclic code of odd length n. Then
there exist unique monic polynomials f, g and h such that ™ —1 = fgh and
C = (fh)® (2fg) : Furthermore, C has type 4%€9924¢9h.

When h =1, C = (f) and |C| = 4"—de9/

When g =1, C = (2f) and |C| = 2749/,

Proof. We know that ™ — 1 has a unique factorization such that

" —=1=fifor fr,

where thef; are basic irreducible and pairwise coprime, We also know, by
the previous theorem , that C' is a sum of (f;) and (2f;). By permuting the
subscripts of f;, we can suppose that C is a sum of

A

(Fern)s (Fera)s s (Fort)s Cfusinn)s 2Fapira)s -+ 5 (210),
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Then

C=(fifor frforirrSorro - fro2fifo - fufosr - fer) = (fR,2f9),

where f = fifo--- fk, 9= forifoso- foporlifl=0

and

h = frris1foive - fror Lifk+1=r.

Whenh # 1 fh and g are coprime, (fh)[()(2fg) = 0. Therefore

IC| = |fh||2fg| = gn—ged(f)—deg(h)gn—deg(f)—deg(g)

When h = 1, the above identity is still true because in this case C' = (f)

and
IC| = |fh||2fg] = gn—ged(f)—deg(h)gn—ged(f)—deg(g) _ gn—ged(f)

When g = 1, the above identity is still true because in this case C' =
(2f) and

_ — gn—ged(f)—deg(h)on—ged(f)—deg(g) _ gn—ged(f)
|Cl = |fh[|2fg] =4 2 2 :

3.4 The dual codes

Theorem 3.4.1. [30] Let C = (fh,2fg) be a Zy cyclic code of odd length n
where f, g and h are monic polynomials such that fgh = x™ — 1.
Then C* is also a Zy cyclic code C+ = (g*h*,2g* f*), and |C*| = 449/ 2degh,
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Proof.
fR(g*h*)" = fghh =0 in Z,/(z" —1),
2fg(g"h*)" =2fghg =0 in Zi/(z" —1).
So, g*h* € C+.

fh2g° ) = 2fghf =0 in Zy)(a" 1)

Also 2fg(2g"f*) =0 Z,/(z" —1).

Thus 2¢* f* € C*, (g*h*, 29" f*) C C*+. Since C has type 49%9924¢9h  CL has
type 4n-degg—deghodegh — gdegfdegh from theorem (3.3.4).

Since 2™ — 1 = f*g*h*, (g*h*, 29" f*) has type 4¢9/"2degh” — jdegfpdegh
Thus C*+ = (g*h*, 29" f*).

]

Corollary 6. [31] Let n be odd. Assume x™ — 1 is a product of k irreducible
polynomial in Zy[z]. Then there are (3)* cyclic codes over Zy of length n.

Proof. Let 2" — 1 = g1(x)ga(x)...gx(x) be the factorization of z" — 1 into
monic irreducible polynomials. If C is a cyclic code, by the pervious theorem
C = (f(2)g(x)) & (2 (x)(x)) where 2" — 1 = f(z)g(x)h(z). Fach gi(z) is a
factor of exactly one of f(x),g(z),orh(x). ]

Example 17. [31]27—1 = (z—1)(23+22%* +2—1) (23 —2?+22—1) let 271 =

g1(2)ga(x)g3(x) let gi(x), go(x)and g3(x) equal (x —1), (23 + 22> +x—1) and
(3 — 2% + 2x — 1) respectively are the monic irreducible factors of x7 — 1.

By the previous corollary there are 3° = 27 cyclic codes over Z, of
length 7. In the table we give the generator polynomials of the 25 nontrivial
cyclic codes of length 7 as described in the theorem
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Code number | generator polynomials | type | dual polynomial
1 2 27 2
2 fi 4° Jaf3
3 f2 4 fif
4 E 4* Jifs
5 fif2 4 f2
6 faf3 4 fi
7 fifs 4 [
8 2f1 20 (f2f3,2f1)
9 2y 2t (f1f2,2f3)
10 2f3 2! (f1f3,2f2)
11 2fafs 2 (f1,2f213)
12 2f1f2 2° (f2:2f1f5)
13 2f1fs 2° (f3:2f1/2)
14 (f1,2f2f3) 452 2f2f3
15 (f2:2f1f3) 44.2° 2f1f2
17 (f1f2,2f3) 4324 2 fs
18 (f1f3,2f2) 43 24 2f3
19 (f2f3,2f1) 4.20 2fi
20 (f1f2,2f113) 220 (fafs, 2f1f2)
21 (f1f2:2f2f5) 422 | (fif2,2fafs)
22 (f1f3,2/1f2) 43251 (fafs, 2f1f3)
23 (f1f3,2f3f2) 42| (fifs,2fsfa)
24 (f2f3,2f1f2) 4.2° | (fife, 2f1fs)
25 (fafs,2f113) 4.2° | (fifs,2f1fa)

Example 18. [31] If C' = (f(z)h(x)) ® (2f(x)g(x)), as in the theorem , we
can easy write down a generator matrix G for C.

Consider C = (g1g3,2g2) in the table Since g1(x)gs(x) = 1+ z + 32 +
223 + 24 and 2g5(x) = 2 + 22 + 223; then the generator matrix for this code
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18

1132100
0113210
0011321
2202000
02202200
0022020
000220 2

C:

46



Chapter 4

Codes over an

In this chapter, the code C' over the ring Z,» has been studied. The ideals
of Zn(x)/(f(x)), where f(z) is an irreducible factor of 2™ — 1 and then use
these ideals to know the ideals of Z,n(x)/(z™ — 1). Finally, we steady the
dual code for the code C.

Definition 45. A polynomial f in the ring R is called reqular if it is not a
zero divisor, i.e., if for g € R, fg =0 implies g = 0.

4.1 The ideals of Z,n|x|/(f(z))

Lemma 13. [23] Let f(z) and g(x) be reqular polynomials in Zyn|x]. Then
f(z) and g(x) are coprime if and only if u(f(x)) and p(g(z)) are coprime
polynomials in F,[z].
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Proof. 1f f(x) and g(x) are coprime, then

alx) f(x) + b(x)g(z) = 1

for some a(x) and b(x) in Zyn[z].

Then

pla(z))u(f(x)) + pb(z))p(g(z)) = p(1) =1,

implying that u(f(z)) and p(g(x)) are coprime. Conversely, suppose that
p(f(x)) and p(g(x)) are coprime. Then there exist a(z) and b(x) in Zyn[z]
such that

pla(x))u(f () + pb(x))p(g(x)) = 1.

Thus
a(z) f(x) + b(x)g(x) = 1+ p"s(z)
for some s(x) € Zpn|x],and positive integer k. Since since 1 + p*s(z) is
invertible, then 1 € Z,[x] by definition 44 this showing that f(z) and g(x)
are coprime.

Theorem 4.1.1. [25] Let f(x) be a regular polynomial in Z,.|x], then

o f(x) = ugi(x)...gx(x), where g1(x),...,gx(x) are reqular pairwise co-
prime primary polynomials.

o Let
f(z) = ugi(x)...95(x) = vhi(2)...hs(2) (4.1)

where u and v are units be two factorization of f(x) into regular pair-
wise coprime primary polynomaials, then k = s and after renumbering,

gi(z) =hi(z),i=1,.., k.
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Theorem 4.1.2. [25] Let n be a positive integer and p does not divides n.
Then the polynomial x —1 over Zym can be factored into a product of finitely
many pairwise coprime reqular, primary polynomials over Zy , say

" —1=g(2), g2(2), ..., gr(x) (4.2)

Moreover, gi(x),g2(x), ..., gr(x) are uniquely determined up to a rearrange-
ment.

Theorem 4.1.3. [25] If f(x) € Zym[x] is a basic irreducible polynomial then

the ideals of Zym|x]/(f(z)) are precisely (0), (1 + (f(z))), (p + (f(x))),...,
(Pt + (f(2))).

Proof. Suppose I is a nonzero ideal of the ring Z,m[z]/(f(x)) and g(z) +
(f(x)) € I for some g(x) which is not belong (f(x)). Since pf(z) is irre-
ducible in Z,[x]

ged(pg(x), pf(x)) =1 or pf(x).

If ged(pf(x), pg(z)) = 1, then there exist a(x),b(x) € Z,m[z] such that
pa(@)pf(z) + pb(z)pg(z) = 1

a(z)f(x) +b(x)g(x) = 1+ pFs(z),
for some positive integer k s(z) € Zym[z]. Since since 1+ pFs(x) is invertible,
then 1 € Z,:[x] by definition 44 this showing that f(x) and g(x) are coprime.
There exists u(z) and v(x) such that 1 = f(z)u(z) + g(x)v(z).

But then (g(x) + (f(x)))(v(z) + (f(z))) = 1+ (f(x)).
Therefore g(z) + (f(x)) is invertible. Hence, g(z) 4+ (f(x)) is invertible.

I'= Zymla/(f(x)) = (1).

+
+

If ged(pf(2), pg(x)) = pf(x).then pf(z)|ug(x).
Hence there exists a(x), b(x) € Z,m such that

g(x) = a(z) f(z) + pb(x)
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where ged(uf(x), pb(x)) = 1.
Hence g(z) + (f(x)) € (p* + (f(2))

1€+ (Fa). (43)
Also p* + (f(x) € I where ged(uf(x), ub(z)) = 1. But the by lemma 13 f(x)
and b(x) are coprime. Hence there exist p(x), ¢(x) € Z,m[z] such that

1= p(2)f(x) + q(x)b(x)

P+ (f(@))) = (a(@)p® + (f(2)))(b(2)p" + (f(2))) €
(" + (f(x)) € L. (4.4)
From (4.3) and (4.4) I = (p* + (f(x)))

4.2 The ideals of Z,n|x|/(z" — 1)

Lemma 14. Let f1(X), fa(X), ..., fu(X) be k pairwise coprime polynomials
over Zym and Let f;(X) denote the product of all f;(X) except f;(X), Then
fi(X) and fi;(X) are coprime fori=1,2,... k.

Proof. By Lemma 13 the coprimeness of f;(X) and f;(X) for ¢ # j implies
the coprimeness of puf;(X) and pf;(X) . But pfi(X), ufe(X), ..., ufi(X) are
polynomials over Z,. So pfi(X) = ,ufl(X)...,u]fi_l(X),ule(X)...ufk(X)
and pf;(X) are coprime. Again by Lemma 13, f;(X) and f;(X) are coprime.

O]

Lemma 15. Let f1(X), fo(X), ..., fr(X) be k pairwise coprime polynomials
in Zym|X], then

(1(X) (X)) fie(X)) = (1(X)) N (f2(X)) N0 (fi(X)).
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Proof. Clearly, (f1(X), fo(X), ..., fxs(X)) € (fi(X)) for every i. Therefore

(f1(X)fo(X)...fe(X)) € (1(X)) N (f2(X)) N0 (fi(X)).

It remains to prove that

([1(X) foX)... fe(X)) 2 (f1(X)) N (fo( X)) NN (fr(X))-

We apply induction on k& . The case k = 1 is trivial. Let £ > 1 and assume
that it’s holds for kK — 1. That is, we have

(f1(X) (X)) feer (X)) = (f1(X)) N (f2(X)) N0 (fraa (X))

Let
9(X) € (fu(X)) N (f2(X)) N N (fre( X)),
then
9(X) € (fi(X) fo(X)...fim1 (X)) U (fi(X)).
Thus there are polynomials ¢;(X), ¢2(X) € Z,m[X] such that
9(x) = (X) f1(X) fo(X)... fimr (X) = @2 fie().

By lemma 14 f1(X) fo(X)...fr—1(X) and fi(x) are coprime. Then there are
polynomials %, (X), he(X) € Z*[X] such that

ha (X) f1(X) fo( X))o fem1 (X) + ha(X) fi(2) = 1.
Multiplying the last equation by g(X), we obtain
9(@)h1 (X) [1(X) f2(X)... fi-1(X) + g(@) ha(X) fir(2) = g(x)

9(x) = (21 (X) + 1 (X)ho (X)) [1(X) f2(X)... femr (X) fie ().
Thus g(z) € (f1(X)f2(X)... fe—1(X) fe(z)). Which compleat the proof. [

Theorem 4.2.1. Let f1(X), fo(X), ..., fr(x) be k pairwise coprime polynomi-
als of degree > 1 over Zy. and a1(X), az(X), ..., ax(X) be any k polynomials
over Zyx. Then the simultaneous congruences

x = a1(X)(modf; (X))

x = as(X)(modfy (X))

51



T = ak (X)(modf,(X)).

has a solution in Z,.[X].
Moreover, the solution is unique modf(X)fa(X) -+ fr(x), i.e., if g(X) and
h(X) are two solutions , then

9(X) = h(X)(modf1(X) f2(X)... fu(x)).

Proof. By Lemma 14 fz(X) and f;(X) are coprime, i = 1,2, ..., k. Then there
are polynomials b;(X) and ¢;(X) over Z, such that

bi(X) fi(X) + ai(X) fi(X) = 1. (4.5)

It is easy to verify that

a1b1f1<X> -+ angfQ(X) + e+ akbkfk(X) (46)

is a solution of the system.

Now let g(X) and h(X) be two solutions of the system.
Then ¢g(X) = h(X)(modf;(X)) ,i=1,2,.... k.
That is, g(X) — h(X) € (fi(X)), i =1,2,..., k. By Lemma 15

9(X) = h(X) € fi(X) fo(X)... fu()

That is,
9(X) = h(X)(modf,(X) fo(X)... fi()).
O

Theorem 4.2.2. Let fi(X), f2(X), ..., fu(x) be k pairwise coprime polyno-
mials of degree > 1 over Zy. and f(x) = f1(X)fo(X)...fu(z). Denote the
residue class ring Zy./(f(X)) by R. Fori=1,2,....k, let

= bi(X)[i(X) + (£(X)), (47)
where b;(X) is the polynomial b;(X) appearing in (4.5). Then
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e R; = Re; is an ideal of R, and e; is the identity of R;, i = 1,2, ..., k.
[ ] R:Rl@RQEBEBRk

Corollary 7. Let f1(X), fo(X), ..., fx(z) be k pairwise coprime monic poly-
nomials of degree> 1 over Zy and f(x) = f1(X) fo(X)...fu(z), Then for any
1=1,2,...,k, the map
Zy[X)/ Fi(X) — (Zu[X)/(F(X))e: = Re, (18)
E(X) + (fi(X)) — (k(X) + (f(X)))es

is an isomorphism of rings.

Corollary 8. Let f1(X), fo(X), ..., fx(z) be k pairwise coprime monic poly-
nomials of degree> 1 over Zy and f(x) = fi1(X)f2(X)...fr(x), Then

Zye (@) /(f(2)) = Zye () [ (f1(X)) © Zpr (2) [ (f2( X)) @ -+ © Zy () [ (fo( X))

Lemma 16. Let n be an odd positive integer and x"—1 = f1(X) fo(X)... fr(x)
be the unique factorization of x™ — 1 into basic irreducible polynomaials over
Zye. Then under the isomorphism (4.8), the ideals (0), (1 + (fi(X))), and

(0 + (fi( X)) of Z[X]/(f:(X)) are mapped into (0), (fi(X)+ (2" —1)) and
(p"f;(X) + (" — 1)) of R; = Re;, respectively.

Proof. Under the isomorphism (4.8), we have
L4 (fi(X)) — (14 (2" = 1))e;.
By (4.7), e; = by(X) fi(X) + (¢" — 1). Therefore
L+ (fi(X)) — b(X) f(X) + (2" = 1).

Clearly, R R
bi(X)fi(X) + (2" = 1) € (fi(X) + (2" = 1)).(+)
Multiplying both sides of (4.5) by f;(X), we obtain
bi(X) fi(X) fi(X) + Co(X) (2" — 1) = fi(X).
Then R R X
bi(X) fi(X) fi(X) + (2" — 1) = fi(X) + (2" — 1),
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which implies

JilX) + (2" = 1) € (bi(X) fi(X) + (2" = 1)).(x)

Therefore

(B:(X)Ji(X) + (2" = 1)) = (fi(X) + (2" = 1)), (by * and * %)

and the image of (1 + (f;(X))) under (4.8) is (f,( )+ (2™ —1)) .
Similarly, we can prove that the image of (p* + (f,(X))) under (4.8) is

(P fix) + (2" = 1)). =

Theorem 4.2.3. [23] Let p be a prime such that p dose not divide n. Let
" —1 = fifa... fx, be a product of basic irreducible and pairwise coprime
polynomials in Zym|[x]. Then any ideal in the ring Zym|[z]/(x™ — 1) is a sum
of ideal (P f;) + (z" — 1), where 0 < j < m — 1.

Proof. By theorem (3.2.4) the factorization of ™ — 1 exists and is unique.
By corollary 8

Zpe[x] /(2" = 1) = Zp[a] /(1) © Zye[]/(f2) © Zpe[]/(fs) © - ® Zps[2]/ (fie).
if I is an ideal of Z,[x]/(2™ — 1), then
I~hHhelLh®- &I

where I; is an ideal of the ring Z:[x]|/(f;), for i = 1,2,--- k. By theorem
(3.2.5),

I; = 0, Zy[a] /(fi)or(p" + (fi).
By theorem (16) I; = Z,[z]/(f;), then it corresponds to the ideal (f;) in
the ring Z[z]|/(z™ — 1), if I; = (p* + (fi)), then it corresponds to the ideal
(p"f; + (z™ — 1)). In any case, the ideal I is a sum of (f; + (z" — 1)) and
(" fj + (2" = 1)). O
Corollary 9. [31] Let p be a prime that dose not divide n . Assume " —1 is

a product of k basic irreducible parwise coprime polynomials in Zym[z]. Then
there are (m + 1)¥ cyclic codes over Zy of length n.
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Proof. Let 2" — 1 = ¢1(x)ga(z)...gx(x) be the factorization of z™ — 1 into
monic basic irreducible polynomials. If C is a cyclic code, by the previous
theorem C' = (p'*g,) @ ... ® (p'*gi) where i; € [0,m] . Hence there is (m +1)*
cyclic codes. O]

4.3  Zym|z]/2" — 1 is a principal ideal ring

The following theorem is generalization for theorem 3.3.4

Theorem 4.3.1. [23] Let p be a prime such that p dose not divide n, and
C is a Zym acyclic code, then there exist a collection of pairwise coprime
polynomials Fy, F, ..., F,, such that C' = (Fl,pﬁg, ...,pmflﬁm) where x" —1 =
FOFl---Fm7 and |C‘ - pzzl_ol(m—i)degFi_,_l

Proof. We know that ™ — 1 has a unique factorization such that

" —=1=fifor fry

where thef; are unique basic irreducible and pairwise coprime. Since " —1 is
monic f;s may be chosen to be monic, We also know, by the previous theorem,
that C' is a sum of ideals of the type (p]fz) + (2" — 1). By permuting the
subscripts of f;, we can suppose that C is a sum of

(fk1+1)’ (fk1+2)7 T (fk1+k2)7 (pfkﬁ-kz-i-l)a (pfk1+k:2+2)7 R

(pfk1+k2+k3)7 ) (pm_lfk1+k2+...+km+l)a sy (pm_lfr)~

Then
C= (f1f2 : "fklfk1+k2+1fk1+k2+2 e fripfife- "fklfk1+1

-1
e fk1+k2fk1+k2+k3+17 e 7f7"; T 7pm f1f27 Tt 7fk1+k2+...+km)-

For 0 <7< m, let

Fi = frythotothitte o Toathot o this -
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Hence R R R
C = (Fl,pFQ, ...,pm_lFm).

Since F;s are pairwise coprime thus
C=Faoph®..ep" 'k,

Therefor, ) R )
O = |Bl[pF...[p™ " Fal

(n—degFy), (m—1)(n—degFy) (n—degEm)

=p" P P

— pZZZBI(m*i)degFiH
O

Theorem 4.3.2. [23][7] Let p be a prime such that p dose not divide n, and
C any Zym acyclic code, then C has the form

C = (fo.pf1, P far s D" fin1)

where the f;s satisfying

Jm—1|fms2l. | folz" =1

Proof. With the notations of Theorem 4.3.1
C = (Fl,pﬁ’g, ...,pm_lﬁm).
For 0 <i<m—2 let f; = FoF;_5...F,, and f,,_1 = Fy . Then
S| fm—al- | folz" — 1.

Also for all 0 S 1 S m— 1 piﬁi—l—l = pZF()FlEFH_QFm = plszngFz
Hence,

C g (f()apfla "'apm_lfm—1>'

To prove the reverse inclusion first observe that fo € C'. As F} and F; are
coprime, there exist polynomials a(x), b(z) € Z,m[z] such that

1 =a(x)Fi(z) + b(z) Fy(x).
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Thus,
pfi =pFoFs.. .y = pa(x) FoFi Fy...Fr + pb(z) fo = pa(x)FZ + pb(z) fo € C.
Proceeding like this we get p'f; € C for all i, 0 < i < m — 1. Thus,

C = (fo,pf1, o D™ 1)
0

Corollary 10. /25][7] If p is a prime not dividing n then Zym /(2" — 1) is a
principal ideal ring.

Proof. With the notations of Theorem 4.3.1,C' = (Fy,pFy, ....,p™'F,). Let
G = F1 + pEy + ...+ p™LE,, . We shall prove that C' = (G). First observe
thatFlF]—OmZp [(z™ —1) forogz,j <m, and i # j.

Also, since Fi, F; are coprime polynomials for all ¢ such that 1 < ¢ < m,
there exist ¢;, r; such that qzﬁ’i + r;F; = 1. It follows that, for all k such
that 1 < k < m, Hle(qiﬁi + 1r;F;) = 1. Therefore, for all k, there exist
polynomials axg, ag1, ..., agr such that

akoFng...Fk =+ aklﬁng...Fk + &kQFlpg...Fk... + akkFng...Fk =1.

Multiplying by p™ 1F,, on both sides of the version of the above equation
with £ = m — 1, we obtain

71ﬁm = pmflam,lFlFQ...Fm,lﬁ’m.
On the other hand,
F\Fy..Fy —1G = p" 'F\Fy.. .Fyy 1 F),.

Consequently, p™~'F,, € (G) and, thus, H = Fy4pEy+...+pm2E, | € (@).
A similar argument yields

A

P2 1 =" P o F\Fy. Fyy oF

and K
F\Fy..Fp oH = p" 2 F\Fy.. . Fyy_oF_1.
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So, we get p™2F, 4 € (G) and, hence,
Fi+pFy+ ..+ p" P Fps € (G).

Continuing on like this, we conclude that

A

Fl;pF%pQF?n “"pmlem € (G)

This completes the proof. n

4.4 Dual cyclic code

Lemma 17. [8] The number of elements in any nonzero linear code C' over
Zym is of the form p*. And the dual code has p' codewords were k + 1 =mn

Theorem 4.4.1. [25][7] Let p be a prime such that p dose not divide n, and
C = (Fy,pFs, ..,p™ ' F,,) where 2" — 1 = FoF)...Fy,, then

Ak

CJ_ = <F1*7ppm*7p2Fn;fl*“-7pmilFQ )

Proof. let

A~ Xk Ak A %k

Cl = (Fl apF2 7"'apm_1Fm )7

we will prove that
C,=cCt

for 0 <i,5 <m-—1,

(p'Fipq) (pj]%;hjﬂ)* is divisible by 2" —1, i+l1#m—j+1
(p'Fis1) (ij;FjJrl)* ts divisible by p", itl=m—j+1.

A

In any case (piE+1)(p7F;L_j+1)* = 0 mod (2™ — 1). That is C; C C+.
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On the other hand |Cy| = p™mdedks pim—1deghy, gydegFs — 2t idegFiy,
But degF' = degF™, so
O] = pEFa et

And
|CH = pf
where )
[ =mn— Z(m —i)degF;q
i=0

= mn— (mdegF; + (m—1)degFy+ (m —2)degF5+...+(m—(m—1))degF,,).

= m(n — degF| — degFy — ... — degF,,) + degFy + 2degFs + 3degFy + ... +
mdegF, 1.
= ZidegFiH.
i=1
Hence 01 = CJ'(Cl Q CJ', |Cl| = |CJ'|) ]

Theorem 4.4.2. [23] Let p be a prime such that p dose not divide n, and
C = (Flvpﬁ% "'7pm71F?m>

where x™ — 1 = FyF}...F,,, then C s self dual if and only if for 0 < i,7 < m,
i+j=1(mod m+1), then F; is an associate of F} .

Proof. Assume C'is self dual, for 0 <i,7 <m, if i+ j = 1(mod m+1) let
9i = F]*
o — 1= FyF,..F,,
(" = 1) = (FoF1...F)" = 9091---Gm.-
Hence
" —1=—gog1-.-Gm = FoF1...F,,,

and
OJ_ = (§1,p§2,p2§]3, "'apm_lgm)

Not that gy = FY, g2 = F),,...0: = Fi, 0<i<m.
Hence F; is an associate F i
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To prove the other direction assume that for 0 < i,5 < m, if i +J
L(mod m + 1), then ¢;F; = F},where ¢; € Zpn

Ak

CJ_ = (FO*,me*7 "'7pm71F2 )

= (C1F1,p02F2,p203F3; --~7Pm710m71ﬁm)
= (ﬁl,pﬁé, ”'7pm—1]ﬁm) = C

Hence, (' is self orthogonal.
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Chapter 5

Codes over finite chain ring

In this chapter, the the generalization of the methods of chapters [2.2] and
[4] has been studied to obtain cyclic and self dual cyclic codes over finite
chain rings with the condition that the length of the code is not divisible by
the characteristic of the residue field .

5.1 The ideals of R[z|/(f(x))

Theorem 5.1.1. [12] For a finite commutative ring R the following are
equivalent:

1. R 1s a local ring and the maximal ideal s principal.

2. R is a local principal ideal ring.

3.R s a chain ring.

Proof. (1) — (2) Let I be anideal of R,if I = Rthenl € [ and I = R = (1).
If I # R, then I C (a) where (a) is the maximal principal ideal. Therefor
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I = a* for some positive integer k.

(2) — (3) Let R be a local principal ideal ring with the maximal ideal
(a) A and B be proper ideals of R. then A = (a') and B = (¥’) for some
positive integers 7 and j less than the nilpotency of a. Hence A C B or
BCA.
Thus R is a chain ring.

(3) = (1) Assume R is a finite chain ring, then R has unique maximal
ideal hence R is a local ring, to prove that the maximal ideal is principal
suppose that the maximal ideal contains a and b in the generating set of it.
Hence, b does not belong to the ideal aR and a does not belong to the ideal
aR, aR not a subset of bR and bR not a subset of aR and this implies that
R is not a chain.

Let p1 : Rlx] — R[z]/(a) be the map which sends 7 to r + (a), and x to
x, where (a) is the maximal ideal ring.

To+T1 T+ AT 1™ (F(X)) — protpriz+- - A prp 2™+ (uf (X)),
(5.1)

Theorem 5.1.2. [12] Let R be a finite chain ring with the mazimal ideal
(a), and t be the nilpotency of a , If f(x) € Zymx] is a basic irreducible
polynomial then the ideals of the chain ring R[x]/(f(x)) are precisely (0),

L+ (f()), (a+ (f(2)),.... (@ + (f(2))).

Proof. Suppose I is a nonzero ideal of the ring R[z]/(f(z)) and g(x) +

(f(z)) € I for some g(z) which is not belong (f(x)). Since uf(z) is irre-

ducible in R[z]/(a)

ged(pg(a), pf(x)) =1 or pf(w).

If ged(pf(z), pg(x)) = 1, then there exist d(x),b(x) € R[x] such that
pd(z)pf(x) + pb(z)pg(z) =1
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d(z)f(z) + b(x)g(z) = 1+ as(z),

)
s(z) € Rlx]. Since 1+ as(zx) is invertible, then 1 € R[z] by definition 44 this
showing that f(x) and g(x) are coprime. *
There exists u(z) and v(z) such that 1 = f(x)u(x) + g(z)v(x).

But then (g(z) + (f(2))(u(z) + (f(2)) = 1+ (f(2)).
Therefore g(z) + (f(x)) is invertible. Hence, g(x) + (f(z)) is invertible.

I'= R[z]/(f(z)) = (1).

If ged(pf (), pg(x)) = pf(z),then pf (z)|pug(x).
Hence there exists d(x),b(x) € R such that

g(x) = d(x)f(z) + ab(z)

where ged(pf(x), ub(z)) = 1.
Hence g(z) + (f(z)) € (a + (f(x))

IC(a+(f(x)). (5.2)
Also a + (f(z)) € I where ged(puf(x), ub(z)) =1 . Hence, f(z) and b(z) are

coprime in R from *.
So there exist p(x), ¢(x) € R[z] such that

= p() f(z) + q(x)b(z)

a+ (f(z))) = (q(x)a+ (f(z )))(()aJr(f(fE)))Ef
(a+(f(z))) € (5.3)
From (5.2) and (5.3) I = (a + (f(x)))

5.2 The ideals of R[z]/(z" — 1)

Lemma 18. [38] Chinese remainder theorem
Let R be a commutative ring. If I, ..., I are pairwise coprime ideals of R,
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then the product I of these ideals equal to there intersection, and the quotient
ring R/1 is isomorphic to R/I, X ... x R/I}y via the following map:

f:R/I = R/Iy x---x R/} (5.4)
fla+)=(z+1,...,x+ L) (5.5)
Theorem 5.2.1. [26] If f is a monic polynomial over the chain ring R such

that pf 1s a square free, then f factors uniquely as a product of monic basic
wrreducible pairwise coprime polynomial.

Theorem 5.2.2. [23] Let < a > be the maximal ideal of the finite chain ring
R, and t the nilpotency of a. Let x™ — 1 = fifo... fr, be a product of basic
irreducible and pairwise coprime polynomials in R|x]. Then any ideal in the
ring Rlz]/(z™ — 1) is a sum of ideal (a7 f;) + (z™ — 1), where 0 < j < t.

Proof. By theorem (5.2.1) the factorization of 2 — 1 exists and is unique.
By theorem 18

Rlal/(z" = 1) = Rlz]/ (/1) © Rlz]/(f2) © Rlx]/(fs) © --- @ Rlz]/(x)-
if I is an ideal of R[z]/(z™ — 1), then
I~ &L & By,

where I; is an ideal of the ring R[z]/(fi), for i = 1,2,--- k. By theorem
(5.1.2),

I =0, or (a"+(f;)). re{l,2,.,t—1}
Since I; = (a” + (f;)) corresponds to the ideal (a"f; + (z" — 1)) in the ring
R[z]/(z™ — 1). Consequently I is a sum of ideals of the form (a’f;) 4 (2" —
1). O
Corollary 11. [12] Let < a > be the mazimal ideal of the finite chain ring
R, and t the nilpotency of a. Let x™ — 1 = fifs... fr, be a product of basic
irreducible and pairwise coprime polynomials in R|x].
Then there are (t + 1)* cyclic codes over R of length n.

Proof. Let 2" — 1 = fi(x)fa(x)...fr(x) be the factorization of 2" — 1 into
monic basic irreducible polynomials. If C is a cyclic code, by the previous
theorem C = (a’ fy) & ... & (a’* f;,) where i; € {0,..,t} . Hence there are
(t + 1)* cyclic codes. O
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5.3 R[z]/(z" — 1) is a principal ideal ring

Theorem 5.3.1. [12] Let (a) be the mazimal ideal of the finite chain ring R,
and t the nilpotency of a. Let C' be a acyclic code over R , then there exist a
unique collection of pairwise coprime polynomials Fy, FY, ..., Fy such that

C = (ﬁl, CLFQ, ciey at_lﬁt)
where z" — 1 = FyFy...F}, and

t=1(t—4)degF;
O] = R/ (a)| ==t eatis

Proof. We know that x™ — 1 has a unique factorization such that

" =1=fifor-- I,

where the f; are unique basic irreducible and pairwise coprime. Since z" —1 is
monic f;s may be chosen to be monic, We also know, by the previous theorem,
that C' is a sum of ideals of the type (a?f;) + (z" — 1). By permuting the
subscripts of f;, we can suppose that C is a sum of

(ka-l)v (fk1+2)7 T (fk1+k2)7 (afk1+k2+1)7 (afk1+k2+2)v T

(afk1+k2+k3)7 Ty (am_lfk1+k2+...+kt+1)7 sy (tm_lfr)'
Then
C=(fifa - fra forthor1 frathora - friafifor - fin frisn

—1
"'fk1+k2fk1+k2+k3+17"' e ;at f1f2"'fk1+k2+...+kt)-
For 0 <1 <t let
E = fk1+k‘2+--.+ki+1"'fk1+k2+...+ki+1'

Hence R R R
C = (Fy,pFy,....,p" ' F).

Since F;s are pairwise coprime thus

C=Foph®..op'F,.
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Therefor, R R R
|C’ == \FlHaF2|...|at_1Ft\

= R/ (@] R (a)| DR ()|
= |R/(a) ’ZE;é(t*i)degFiﬂ

]

Corollary 12. [32] Suppose C is a acyclic code of length n over the ring
F, + uF, + ... + u*7YF,, p is not devisable by n, then there exist a unique
collection of pairwise coprime polynomials Fy, F1, ..., F}, such that

C= (ﬁl,Uﬁg, ceey ukflﬁk)
where x" — 1 = FyFy...F, and
k—1 .
|C’| — pzz':o (k—i)degFiy1

Theorem 5.3.2. [12] Let (a) be the mazximal ideal of the finite chain ring
R, and t the nilpotency of a, and C' any R cyclic code, then C has the form

C= (f07 afb a2f27 EXD) am_lfm—l)

where the f;s satisfying

Jm—1|frm—z|--| folz" =1

Proof. With the notations of Theorem 5.3.1
C = (Fl,aﬁg, ...,am_lFAm).
For 0 <i<t—2let f; = FyF;_5...F;, and f,_1 = Fy . Then
Jm—1|fin—2l--| folz™ — 1.

Also for all 0 < i < m — 1 a;Fy 1 = a'FyF...FiFyss..F, = a'f;F\ Fs...F,.
Hence,

C Q (f(), CLfl, ceey CLm_lfm_1>.
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To prove the reverse inclusion first observe that fy € C'. As F; and Fy are
coprime, there exist polynomials ¢g(z), b(z) € R[z] such that

1 =g(z)Fi(z) + b(x) Fa(x).
Thus,
afy = aFyFs...F,, = ag(z)FyFy Fs...Fy, + ab(z) fo = ag(z)Fy 4 ab(z) fy € C.
Proceeding like this we get a’f; € C for all i, 0 < ¢ < m — 1. Thus,
C = (fo,afr,....a" " 1)
O

Corollary 13. [3] Suppose C' is a acyclic code of length n relatively prime
to q over the ring F, + uF, + ... + u*=*F,, which has (u) as a mazimal ideal
ring and k is a nilpotent index of then C' has the form

C = (fo, ufi,u? fo, ooy "' fr1)

where the f;s satisfying

Jr-1lfr—2l.-- folz" =1
Corollary 14. [12] R[x]/(z" — 1) is a principal ideal ring.

Proof. With the notations of Theorem 5.3.1, C' = (ﬁl,aﬁz, ...,at_lﬁt). Let
G =F, +aFy+ ..+ a'F, . We shall prove that C = (G). First observe
that F;F; = 0 in R[z]/(z" — 1) for 0 <i,j <t, and i # j.

Also, since [}, F; are coprime polynomials for all ¢ such that 1 < ¢ < ¢,
there exist ¢;, r; such that tii +r;F; = 1. It follows that, for all k such that
1<k<t, Hle(qiE+TiFi) = 1. Therefore, for all k, there exist polynomials
9ko, 9k1y ---5 9k such that

ngFng...Fk + gklﬁlFQ-“Fk -+ gkzFlﬁg...Fk... + gkkFlFQFk =1.

Multiplying by a'~*F} on both sides of the version of the above equation with
k =1t — 1, we obtain

t—17 t—1 A
a Ft =a gt—1,0F1F2~-'Ft—lFt-

67



On the other hand,
FlFQ...Ft_lG = at_lFlFQ...Ft_lﬁ}.

Consequently, a' ' F, € (@) and, thus, H := F} +afy + ... + a'2F,_; € (G).
A similar argument yields

t—2 7, t—2 A
a "k =a " o Fy. By o Fy

and )
F1F2...Fm,2H = CLtizFlFQ...Ft,Qthl.

So, we get a'"2F,_; € (G) and, hence,
Fy+aFy 4 ..+ a7 F 5 € (G).
Continuing on like this, we conclude that
Fi, aFy,d*Fy,...,a" ' F, € (Q).
This completes the proof. n
Corollary 15. [3] The ring
Fy[z] + uF,[z] + ... + u* ' F[z] /(2" — 1)

15 a principal ideal ring.

5.4 Dual cyclic code

Lemma 19. [26] Let R be a finite commutative chain ring, with maximal
ideal (a), let t be the nilpotency then

1. The characteristic of R and R/(a) are powers of p where p is some prime,
and |R| =p* , |[R/(a)| = p' for some integers k,l and k > 1.

2. |R| = |R/(a)|" i.e. k=1t
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Lemma 20. /8] Let R be a finite commutative chain ring of order p*. The
number of elements in any nonzero linear code C of length n over R is of
the form p* where k € {1,2,...,un}. And the dual code has p' codewords were
k+1=n.

Theorem 5.4.1. [12] Let (a) be the mazximal ideal of the finite chain ring
R, and t the nilpotency of a, and

C = (Fl,alf’z, ...,atflﬁt)
where x" — 1 = FyFy...F}, then
Cct = (F’l*,aﬁ’t*, ...,at’llfg*)
(C] = | R/ (a) o e

Proof. let

Ak

Cl = (Fl*,a]:—’t*, ...,ating ),

we will prove that
C,=cCt

(ai]*?qu) (ajl?ttjﬂ)* is divisible by 2" —1, i+l1#t—j+1
(a'Fiyr) (dE} ;)" is  divisible by af, i+l=m—j+1.

o In any case (aiEH)(ajﬁ;l_jH)* =0 in R[z]/(z"—1). Thatis O, C
On the other hand
Cy| = |Fy||aF} ). |t Fy

|[R/(a)| 95 |R/ ()| DT | R (a)| "0
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\le _ ‘R/<a)|2f:1 idegFit1 — pLZLl idegFiH.

And

[CH =
where

t—1

l=tn— Z(t —i)degFi
i=0
= itn — (tdegFy + (t — 1)degFs + (t — 2)degFs + ... + (t — (t — 1))degF}).
= tu(n — degF) — degFy — ... — degF,) + tdegFy + 2udegF3 + 3udegFy + ... +
tudegFy .
t
=1 Z 1degFiy 1.

i=1

Hence C; = C+(C) C C+,|Cy] = |CH)). O

Theorem 5.4.2. [12] Let
C= (Fl, CLFA’Q, ceey at_lﬁt)

where 2™ — 1 = FyFy...Fy, then C s self dual if and only for 0 < i,5 <t, if
i+j=1(mod t+1), then F; is an associate of F; .

Proof. Assume C'is self dual, for 0 < i,5 <t , ifi+j=1(mod m+1) let
9i = F]*
" — 1= FyF,..F,
(2" = 1) = (FoF1..F})" = gog1---G-
Hence
2" —1=—gog1...9: = FoF1... F,

and

CJ_ == (gl? ag2? a/2g37 ) a’tilgt)
Not that go = F¥, go = Ff,...3; = F;, 0<i < t.
Hence F} is an associate FJ*

To prove the other direction assume that for 0 <1, 5 <t, if

i+7=1(mod m+1),

70



then ¢;F; = F},where ¢; € R

2 t—1
= (ClF17a02F27a C3F37"'7a ctle;E)
~ ~ 1P
= (Fl,CLFQ,...,G, Ft>:C

Hence, C' is self orthogonal.
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Chapter 6

Codes over noncommutative
rings

In the previous chapters the cyclic codes has been characterized in terms of
the factors of polynomial ™ — 1. This chapter investigates cyclic linear codes
over arbitrary (not necessarily commutative) finite rings and prove that the
characterizations in previous chapters to be true for a large class of such
codes over these rings.

Definition 46. A R module M is free if there exists a subset B of M,
called a basis, such that every element in M is uniquely expressible as a
linear combination of the elements in B.

Definition 47. [18] A submodule S of a left R module M is a direct summand
of M if there exists a submodule T' of M with M = S & T. The submodule
T is called a complement of S.

Theorem 6.0.3. Let R be a ring. The following are equivalent

o R s left simisimple

e cvery left R module is projective
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o cvery finitely generated left R module is projective
e all cyclic left R module are projective.

Theorem 6.0.4. Let R module M 1is projective iff M is a direct summand
of a free left R module

Definition 48. [24] A linear left code C of length n over a finite ring R is
a submodule of rRR™. We call C splitting if it is a direct summand of R R"

Definition 49. [2/] A cyclic linear left code C' of length n over a ring R is
a left ideal of R[z|/(a™ —1). C'is called splitting if it is a direct summand of

r(R[z]/(z" —1)).

Theorem 6.0.5. [25] Let R be a finite dimensional algebra, then either R
has a zero divisor or every finite dimensional left R module is free.

6.1 Divisors of 2" — 1 generate splitting codes

Lemma 21. [24] Let R be a finite ring, and let gh = z™ — 1 for some
g,h € Rx], then:

(a) g and h commute, i.e. hg = 2" — 1.

(b)r(R[x]h) is a free module.

(c)R|x]g is a direct summand of rR[z].

Proof. (a) h(gh — (2™ — 1)) = hgh — h(z" — 1) =0

hgh = h(z™ —1).

Hence hg = 2™ — 1.

(b)For the constant coefficients go, hg of g and h, respectively, we have gohg =
—1 and hence gy and hg are units of R, since R is finite.

From theorem 1.1.1 we get that fh = 0 implies f = 0 for all f € F[x]. This
leads to the R|[x] isomorphy and hence to the R isomorphy of R[z| and R[z|h
which proves this module to be free from theorem 6.0.5.

(c¢)Consider the map

Rlz] — R[z]h/ (2" — 1)
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Its kernel is R[x]g, and since R[z|(2z™—1) is a direct summand of the free mod-
ule gR[x]h, we know R[z|h/(z™—1) to be a projective R-module. This shows
R[x]g to be a direct summand of g R[x] since R[z|(z"—1) = Rlz|g(x)h(z). O

Corollary 16. [24] For a finite ring R every divisor of ™ — 1 in R[z] gen-
erates a cyclic splitting code of length n.

Proof. Let g be a divisor of ™ —1 in R[z], then by Lemma 2.1 we know R[z]g
to be a direct summand of pR[z] which contains the submodule R[z](z™ —1).
Hence we obtain R[z]g/(z™ — 1) to be a direct summand in g(R[z]/z™ — 1)
which proves our claim. O

6.2 Characterization of all cyclic splitting codes

Theorem 6.2.1. [2/]

(a) For a semisimple ring S := R/Rad(R), the polynomial ring S|x] is a (left
and right) principal ideal ring.

(b)If R is a finite ring, then Rad(R)[z] is a small submodule of rRR[X], i.e.
for any submodule U of rR[X] with Rad(R)[x] + U = R|x] it follows that
U = R[x].

Proof. (a) From lemma (3) and Wedderburn’s theorem S is isomorphic to
an n X n matrix ring over a division ring (skew field) F, so let S = M, (f).
Hence we wont to prove that M, (f)[x] is a principal ideal ring. Not that
M, (f)[x] isomorphic to the matrix ring M, (F[z]). From lemma (4) F[z] is
principal ideal domain, lemma (2) implies that M, (F[z]) is a matrix

(b)From lemma 5 its clear that Radg(M) is a small submodule of g M. Now
choose M = R[x], together with Rad(R)[z] = Rad(R)R]z] it follows that
Rad(R)[z] is a small submodule of pR[X] O

Theorem 6.2.2. [2/] For a cyclic linear left code of length n over a finite
ring R the following are equivalent:
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(a) C is a splitting code.
(b) There exists a divisor g of x™ — 1 in R[x] such that C' = R|x]g/(z" — 1).

Proof. (a) — (b) Assume C' is a splitting cyclic linear code, that is C' a
direct summand of r(R[z]/(z" — 1)), let T be the complement of C, i.e.,
T®C = R[z] and TNC = Rlz](z" — 1).

Define 7" :=TN(R® Rx ® Rz* @ ... ® Rz '), then T” is a complement of
C' in gR[z].

Now consider the natural map u :p R[x] —, S[z], let u(C) = C.

From theorem (6.2.1) S[x] is a principal ideal. Hence, there exist g € C such
that § = C, define Cy =< ¢ >. Then Cy < C and Cy N T" = 0 whereas
Co + T" + Rad(R)[z] = Rlx]. Theorem (6.2.1) yields Cy @ T = R]x] and
thus Cy = C. Hence C' =< g > and because of (z" — 1) < C' we obtain a
polynomial h € R[x] such that hg = 2™ — 1.

6.3 F, Linear Map

A non commutative ring, denoted by w2 +vpw,2, v, an involution in M, (F,),
that is isomorphic to Ms(F,) is constructed through a unital embedding
7 from Fp2 to My(F,). The elements of wy come from Ms(F),) such that
T(F2) = wpe.

The structure theorems used the transformation of the non commuta-
tive ring wp2 + vpwp2 t0 wWy2 + upw,z by introducing a matrix ip € My(F,)
such that u, = 7, 4+ v,, where ug is a zero matrix.

The unital embedding 7 come from a characterization of F}, in terms
of an irreducible polynomial f(z) = 22 + x + (p — 1) € F,[z]. The property
of this polynomial restricts our study to case where p = 2 or 3 mod 5.
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Lemma 22. Let p = 2 or 3 mod 5 then the polynomial f(x) = 2*+z+(p—1)
is wrreducible over F,

Theorem 6.3.1. Let f(z) =Y ! a;x’ € Fylz] be a monic irreducible poly-
nomial. Then mapping m : Fy[z] — M, (F,), g(x) = g(X) induces a unital
embedding of F,[x] into M, (F,) where

0 0 0 —ap

1 0 0 —Qaq
xXxX=1| 0 1 0 —as

0O 0 - 1 —a,

Corollary 17. Let F,» = F,[w] where @w® + w + (p — 1) = 0 then
T Fpe — My(F,)

a b

defined by a + bw — ( b oa+(p—1)b

) 18 an embedding.

Theorem 6.3.2. If @ is a root of f(x) =22+ x+ (p—1) then
@ = (p— Dw + (p — Ymod(w® + @ + (p - 1)).
Theorem 6.3.3. (p — 1)@ + (p — 1) is a root of f(x) since
flp=1w+(p-1)

=((p-Dw+@-1D)P +@p-Dw+{p-1)+@p-1)
=[p-1*@+1+[p-Dw+ -1+ (-1
=’ +2w+1—w—2
=’ +w+(p—1)
= 0.

By division algorithm, there exist g(x) and rx-+ry such that 2P = g(z) f(x)+
(rix + ry) where rix + ry is the remainder when x? is divided by f(x). Since
w and (p— 1)w+ (p— 1) are roots of f(x) then we have wP = ryw + ry and

(p—Dw+@-Dp=nrnlp—w+{@-—1)]+r
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or equivalently,
p—D@"+ (-1 =np-Dow+rp-—1)+r
Since the characteristic of F,, is p,
(p=Dw+@-DF =lp-D="+ -1 =[p-1)'=T+@p-1"
from fermat’s Little theorem,
(p-V=" I+ (-1 =p-)="+(p-1)

Adding w? = riw+ry and (p— 1w + (p—1) =nr(p—Dw+ (p— 1)+
modulo p, then (p — 1) = ri(p — 1) + 2ry or equivalently 1 + (p — 2)r* = 1.
since the ged(1,p—2) =1, and 1 = (p—1)—(p—2) = (p— )+ (p—2)(p—1).
ry =p—1andry =p—1. Hence w’ = (p—1)w+(p—1)mod(w*+w+(p—1)).

@)= (22

Theorem 6.3.4.

Proof. 7T is a homomorphism hence 77(w) = 7(w?)

(@) =71(@") =7((p - Do+ (p— 1))
=7(p—7(w) +7(p—1)

_(p—-1 0 0 1 (P 1 0
- 0 p—1 1 p—1 0 p—1
_(pr—1p-1
S \p—-1 0 '
m
Theorem 6.3.5. Let F), be the set of all scalar matrices in My(F,), p = 2
or 3 mod 5, T(F?) = wp and v, = ( 0 1

1 p—1
wylT(w)] = wp2 and My(F,) = wye + vpwye.

) , then vp7(w) = 7°(w)vy,
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0 0

Proof. Note that 7%(w) + 7(@) + 7(p — 1) = ( 00

), hence its easy to

prove that v,7(w) = 7°(w)v, and wy[7(w)] = wye.

a+b b+d
wpz—i-vapz:{( b o d a—b—c) ta,b,e,d € F}

- Mng.

6.4 The ideals of My(F,)(z)/(f(z))

p—1 0

Letpz2or3(mod5),ip:( 0 1

00
(Oo)and
a b

Wy2 —i—upwpz:{< b ¢ a—b—d) ta,b,c,d € Fy}.

) and u, = v, + ip. Then uy =

We have a natural homomorphic map from w2 + upw,2 to its field wye.
For any a € wp2 + upw,2, let a denote the polynomial reduction modulo wu,,.
Now define a polynomial reduction mapping p : wp2 + upwy2[z] — wy2[z] such

that i i
flz) = Zaixj — Zdixj.
i=0 i=0

A monic polynomial f over w2 + u,wy2[z] is said to be basic irreducible if
p(f) is irreducible over wyz[z].

Theorem 6.4.1. [10] Let A, denote wy2 + upwy2, if f(x) is an irreducible
polynomial over w2, then the only right A modules of the non commutative

chain ring Alz]/(f(z)) are (7(0)), (7(1)) and (u,).
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Proof. Suppose I is a nonzero ideal of the ring A[z|/(f(z)) and g(x) +
(f(x)) € I for some g(z) which is not belong (f(z)). Since

ged(pg(x), pf(x)) = 7(1) or puf(x).

If ged(pf(x), pg(x)) = 1, then there exist a(z), b(z) € wy2[z] such that
pa(@)pf(z) + pb(z)pg(z) = 1
() f(z) + b(x)g(e) = 1 + us(z),
s(x) € wpe[z], multiply both sides by (1 + us(z))
() f(@)(1 + us(e)) + b(a)g(@)(1 + us(x)) = 7(1),
a(x) f(x)(1+us(z)) + ((9(=))(b(2)(1 + us(z)))) = 7(1)

(b(x)(1 +us(z)) + (f () (9(x) + (f(z))) = 7(1) + (f (z)).
Hence, g(x) + (f(z)) is invertible.

I'=Alz]/(f(2)) = (7(1)).

If this never happens
IS (u+t (f(X)))
to proof the other inclusion ged(uf(x), pg(z)) = pf(x), then there exists
a(z),b(x), s(x) € wy2 such that
pa(@)pf(x) + pg(z)ub(z) = pf ()
( )f(x) + b(z)g(x) = f(x) + ups(z)
pa(7) f(x) + upb(x)g(x) = up f ()
upb(l’)g(fl?) + (f (@) = up + (f(2))
Hence, u, + (f(z)) € 1
(up + (f(2))) € 1.
Hence I = (u, + (f(2))) . ]

Corollary 18. [1] If f(x) is an irreducible polynomial over wy , then the
only right A modules of the non commutative chain ring Alx]/(f(z)) are (0),
(1) and (u).
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6.5 The ideals of Ms(F,)(x)/(z" — 1)

Theorem 6.5.1. [40] Let fi(x), fa(z), ..., fr(x) be submodules of the R mod-
ule M, then the following are equivalent
(1) The canonical map

p 0 T M)
m — (m + fz)zgk

18 eptmorphisms and monomorphisms

(2)for every i < n we have f; + Nizjf; = M and Ni<, f; = 0.

Proof. Let p be epimorphisms and m € M. For j < n we form the element
(- 0,m+£5,0,...) € [ic,, M/(fi(X)) and choose a pre image mqo € M under
p. Then my —mg € f; and my € Nix; f; i.e. m € f; + Nixj fi

Now consider (m + fi)i<n € [l;<, M/(fi(X)). By (2), we can find
k; € F; and lgj € Nixz;fi with m; = k; + lgj For the element m = k~1 + 152 +
vo+ kyp € M, we get

(m)pmj=m+ fj=ki+ fj=m;+f; forallj <n.

Since kernel p =N, <, f;, the map is monic if and only if N;<,, f; = 0.

]

Corollary 19. [1] Let 2" — 1 = f1(X) fo(X)...fx(X) where fi(x) are irre-
ducible polynomials over wy, as right modules we have the expansion

Alz]/(a" = 1) = Ala]/ 1(X) © Al2]/ o(X) @ ... © Alz]/ f(X)

Theorem 6.5.2. [10] Let 2™ — 1 = fifo... fx, be a product of irreducible
polynomials over wy2. Then any ideal in the ring Alz]/(z" — 1) is a sum of

ideals of the form (uf;), and (fg)
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Proof. The factorization of 2™ —1 exists and is unique over w,2 . By corollary
19

Ale] /(2" = 1) = Alz]/(f1) © Alz]/(f2) © Alz]/(fs) @ - - & Alz]/(fi).
If I is an ideal of A[z]/(2™ — 1), then
I~L LD @ I,

where [; is an ideal of the ring A[x]/(f;), for i = 1,2,--- k. By theorem
(6.4.1),

Ii=7(0),  (up+(fi)) or (v(1)+(f))

Since I; = (7(1) + (f;)) or I = (u, + (f;)), corresponds to the ideals (f; +
(™ —1)) or (upf; + (™ — 1)) respectively in the ring A[z]/(2" — 1).
Consequently [ is a sum of ideals of the form (u,f;), and (f;). ]

Theorem 6.5.3. [10] Suppose C is a cyclic code of length n over A, =
Wp2 + upw,z where n dose not divides p. Then there are monic polynomials

Fy, Fi, Fy such that C = (Fl,upﬁg) where FoF1 Fy = o™ — ( (1) (1) ) , and

’ C‘ — p4degF1 +2degF>

Proof. We know that x™ — < (1] ) has a unique factorization such that

1
0
" — 1
0

?):flfz“'fr,

where thef; are irreducible, We also know, by the previous theorem, that
C'is a sum of (f;) and (u,f;). By permuting the subscripts of f;, we can
suppose that C'is a sum of

(fk+1)> (fk+2)a T (fkﬂ)y (Upfk+l+1)a (Upfk+l+2)a B (upfr)a
Then

C=(fifor - frfrorrforiza - fooupfifor - fufiorr - for) = (FoFs, upFoFy),

where Fo = fife - fk, F1 = fes1for2 - fraor 1 if1=0
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and
Fy = fevipifrorige--- fror 1 of k+l=r.
To calculate the order of C, note that
C = (Fl) D (UPFQ).

Hence, A A
|C| = (p2)2(n—degF1) (p2)2(n_d€gF2) _ p4d@gF1+2d6gF2.

]

Corollary 20. [1] Suppose C' is a A cyclic code of odd length n over My[Fs].
Then there exist f, g and h such that " — 1 = fgh, 8 pairwise coprime
factors over wy such that

C = (fh) @ul(fyg).

and |C| = A(2degFi+degFy)

Proof. Follow directly from the previous theorem (choose p=2) ]
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